CEDA Log Structured Store

David Barrett-Lennard
Cedanet Pty Ltd
Perth, Western Australia
david.barrettlennard@cedanet.com.au

March 24, 2010

Abstract Multiplexing of the output allows for hot standby and backup
consistent with 24 x 7 operation.

This article describes the CEDA Log Structured Store whichtpa [55 has been thoroughly tested. It has accumulated weeks
provides persistence for arbitrary sized binary objectssup- ot continuous stress tests on a range of different machirites w
ports frequent and fine grained transactions, recovenWmC gigerent hardware, reading and writing many tera-bytedait.

hot standby and is self cleaning to avoid fragmentation.rdt P This testing has included emulation of random system cgashe

vides excellent control over clustering to optimise read@¥e 5. yajidation that the store recovers to a valid snapshot.
mance, and the ingestion rate closely matches the sustatited

rate of a hard-disk (e.g. 100 MB/sec), and yet provides prope
journaling for atomicity in the face of failures.

2 Serial Element Map (SEM)

1 Introduction
_ . At its essence the LSS is a persistent map calledstréal Ele-
The CEDA Log Structured Stor@ SS) is a persistent store forment Mapor SEM. This maps a Seid to an ordered list of bytes

arbitrary sized binary objects, referred tosesial elementsit (i.e. a byte stream). When an LSS is first created the SEM is
has all the features required for an industrial strengtialsige empty.

storage layer. _ , A serial element (identified by a Seid) is said to exist if ehisr
Serlql elements are regd or written as a byte stream, in a rTEé?W'entry for that Seid in the SEM. This includes serial eleimen
ner S|m|I§1r to the C functions ead ar‘,dTWi te qsed toread and ot have been written with zero size. There is an entry in the
write a file. The store can deal efficiently with very small ange it and only if the serial element has been created witHla ca
very large serial elements. The overhead on secondangsi®a , \y eseri al & ement but has not subsequently been deleted
of the order 20 bytes per serial element. with a call toDel et eSeri al El ement. A serial element can be

_ Serial elements are identified by a 64 8irial Element Iden- rocreated after it has been deleted (perhaps in the onetrans
tifier (Seid). The LSS provides a mechanism for allocating NeY%n), simply by callingw i t eSer i al El ement again.

unused Seids as required. Seids are logical (not physimaBn-

ing that a Seid doesn’t represent a physical location on. disk

Therefore the LSS is able to move serial elements in order to

avoid fragmentation and maximise clustering for read perf® 1 Serial element ldentifiers
mance.

Serial elements are created, modified or deleted within fagch serial element is uniquely identified by a 64 bit number
scope of a transaction, and the LSS ensures atomicity of eggffed a Seid. The null Seid has the value 0 and cannot be osed f
transaction — i.e. all changes made by a transaction aréeépphny serial element. A Seid can be regarded as an array of 8. byte
or else none are applied. For example, a transaction coilltd fagq, reasons that are peculiar to the implementation of tH®, S
commit because of a power failure or a system crash. The ngifid Seid requires that each byte be non-zero. A databgse ty
time the store is opened, any uncommitted transactionsuéoe ajca|ly bootstraps a root object with Seist0101010101010101.

matically rolled back. CRC checks and other measures aeatakne |SS public headers define a constant nareer_SEI Dwith
to carefully validate the recovered data. The time for avenp thjs special Seid value. -

scan is bounded, and on typical hardware will never takedong
than a few seconds. T
: . erators €=, '=, <, <=, >, >=). Anordering is imposed to al-
Changes to serial elements are never performed in-place_on , .
. . . . ow the sei d datatype to be used for the key dnd: : map or a
disk. Instead new versions of serial elements are alwaysttew B-Tree
at the end of a single growirlgg comprised obegmentshat are o _) _)
typically 512k or 1M byte in size. This practically elimiratdisk ~An application layerusing the LSS will typically record Seid
seek overheads during writing, and data can typically betewri values in the byte streams of serial elements, to allow Iselea
close to the maximum sustained transfer rate of the haid-di@ents to reference each other.
which could translate into millions of serial elements pseand. The number of serial elements is constrained by the maximum
Serial elements are written one after the other with no vdastaze of the store which is about 500 TB with the default sg#in
space even though they may vary greatly in size. Serial eleameather than the size of the 64 bit Seid space. This 500TB limit
never become heavily fragmented like files in a file system bg-simply a function of the size of the root block and can be in-
cause serial elements are rewritten when they change size. creased easily if required.

Classsei d (defined in Seid.h) supports all six comparison op-

1

3 Concurrency

Doesn't
EOpenMode Already exists ;
The LSS implementation only takes partial measures to cainst already exist
concurrent access to serial elements. It is concerned hétint i i
tegrity of its internal data structures. For example, t8&S Seg- j al al
OM CREATE_NEW fail create+open

ment Cachas thread safe. However this is relatively low leve
and insufficient to ensure serialisability of transactidaned in
anapplication layer{which we use to refer collectively to the lay
ers above the LSS). It is likely that an application layenvmtes
its own concept of transactions, and only opens LSS-traiosec
for short periods in order to propagate changes made taérans
objects resident in memory to the store.

LSS-transactions would be sufficient but for the fact that/th
are only intended for parenthesizing writes to the storés ot is very important not to use the standard Gtetet e operator on
necessary to open an LSS-transaction in order to read sétal the pointer.
ments. Any number of threads can concurrently read segal el The header fil@eda/ cxUti | s/ Aut od oser . h defines a conve-
ments (even the same serial element). This correspond® torfilent template classut oc oser <T> that can be declared on the
shared read access mode often provided by high performafiigge and it calls) ose in the destructor. This ensures the code
database systems. Furthermore, multiple threads can He rgsexception safe.
ing serial elements concurrently with an LSS-transactiat ts
creating, modifying or deleting (other) serial elements.other . .
words, the LSS provides no mutex to enforce mutual exclusion Creating or opening an LSS
between the thread writing new data to the store, and thadsre
that are reading existing serial elements. All data in an LSS is stored in a Single file. An LSS is created

All writes (i.e. all API functions that modify the SEM) areP" opened with a call tgf nCr eat ear OpenL.ss which has the fol-

fully serialised. Only a single thread can open an LSS-tratisn 10Wing signature:

' OM DELETE_EXI STING | delete+create+open fail
OM CREATE_ALWAYS | delete+create+open create+open

OM _OPEN_EXI STI NG open fall
OM OPEN_ALWAYS open create+open

Table 3: EOpenMode

atatime. This is enforced by a mutex within the implementati || | ogst ruct uredSt orex gf nCr eat er OpenLSS(
of the LSS. The mutex is locked byenTr ansacti on and un- const charx |ssPath,
locked whend ose is called on the transaction. Although LSS- const charx del tasDirPath,
transactions are mutually exclusive, an application layewy bool & cr eat edNew,
y ! F_’p . EOpenMbde openMode,
support concurrent changes to objects resident in mematy, b const LssSettings& settings);
a detailed discussion of that topic is outside the scopeisfah
ticle. Table 1 describes these formal arguments. The file is

It is therefore up to the layers above the LSS to make sure cBRened with exclusive access so it is not possible for an-
current reading and writing is performed in a meaningful w&fher process to open the same LSS fjencr eat e0r GpenLss
(and as a minimum ensures that a serial element is not con8g\er returns NULL. After using the store it must eventu-
rently written and read by different threads). For examgeyar ally be closed by calling the ose method. If an error oc-
on top of the LSS may implementlack managerthat ensures CUrs thengf nCreat e0r GpenLSs throws aFri | eException (see
transactions follow &wo-Phased Lockin(2PL) protocol. Fi | eExcepti on. h) Or elseCor r upt LSSExcept i on.

Strict 2PLis where locks are taken as objects are accessed
while the transaction proceeds, and all locks are releaseshw : :
the transaction ends. Unfortunately it allows for deadklsce- 6 Readmg serial elements

narios and the normal approach is to pick one of the trarmm:tiAS discussed in section 3, it is not necessary to open a ttiosa
(the “victim”) to be aborted. However the LSS doesn't suppap, order to read serial eleinents

aborting of an LSS-transaction (and roll back), so this ephc Reading a serial element may block on 1/O if the required data

would need to be implemented somehow within the applicati%nnot already resident in memory in tBegment CacheA very

layer. _ . _) _ large serial element may take up many segments. Segments are
The LSS is effective for supportingonservative 2Pln the ,a4eq from disKazily as the serial element is read as a byte
application layer. This is where all locks needed by a tretisa i aom.

are gai_necbeforethe transaction begins. |f |Of:kS are gai,ned in The methodi LogSt ruct ur edSt ore: : ReadSeri al El ement IS
a consistent total order, dead-locks are avoided. Cort3&vaseq (g open a serial element with the gigend for reading.
2PL can be appropriate when relatively course level locking
used - such as by partitioning objects into large spacesetiet || O oseabl el nput Stream: ReadSeri al El enent (
employ a single mutex (which could optionally support a sbar Seid seid) const;

read access mode in addition to exclusive access).

Itis an error to call this function on a serial element thaiis
rently opened for writing (within a transaction), or beingjeted
using a call tael et eSeri al El enent .

4 Use of Abstract Base Classes Shared reading of serial elements is supported. i.e. anpaum
of threads can independently (and concurrently) read theesa
Most of the functionality in the API is provided using pure-atserial element, assuming each such thread has made annirdepe
stract base classes which serve as interfaces. In genesa ttent call torReadSeri al El ement - i.e. they don't try to share a
abstract base classes hava ase method, and this must alwayseturned d oseabl el nput St r eam
be called to destroy the object and free allocated resou@@®se ReadSeri al El enent returns an input stream interface which
d ose has been called it must be assumed the object has beercdne-be used to read the bytes currently recorded in the sérial
stroyed so it is not permissible to issue any more method.dall ement in sequence from start to finish. Seeking within thialser

2

Argument Description
A null terminated string representing the path to the LSStdilbe opened or
| ssPat h created. It may either use forward or back slashes in the path

If IssPath = "nenfile", then the LSS will be transient — i.e. it will resid
entirely in memory.

D

del tasDirPat h

NULL or else specifies the path to a directory in which to creatediéés. See
section 14

creat edNew

Boolean out-parameter assigned the value: if and only if a new store was
created.

An enumerated type that determines whether to allow aniegistore to be
opened or a new store to be created. The possible valueste iln Table 3.
If the file already exists then there are three options: Tinetfan can either
fail, open the existing file, or delete the old file and createea empty one.
Otherwise, if the file doesn't exist then the options areegith create an empty
file or else to fail. This leads t® x 2 = 6 different modes, only of which are

openhbde
actually useful.
If the file exists when it's not expected or the file is absenewlt’s expected
then aFi | eExcept i on exception is thrown.
If openmbde is either OV CREATE_ALWAYS, OM DELETE_EXI STING Of
OM _CREATE_NEW any existing file will be deleted andreat edNew will be
assigned the value ue
settings Defines various low Ievgl _settings that qnflue.nce the pertorce of the LSS
See Table 2 for a description of all the fields in tRgSet t i ngs struct.
Table 1: Arguments to gfnCreateOrOpenLSS
Field Initial value Description
m flushTimeM | 1i Sec 1000 Maximum time in milliseconds to flush the log after committia transaction
If segment utilisation (expressed as a percentage of tha hat containg
m.cl eaner Ui lisationPer cent 85.0 usefgl data) falls beloév tr?is threshold tr?en a seggment mlde]:g
_ , If set then the Win32 file cache will be used. Typically notuiggd because
menabl eFi [eBuf fering false the LSS performs its own buffering, with i8&gment Cache
m_maxNumBegent s| nCache 32 Maximum nL_lmber of segments in the segment cache. With defalules seg-
= ment cache is 32 x 512kB = 16 MB.
Sets the rate at which the store is check pointed. With theuttafalues a check
point is performed after writing 128 x 512kB = 64 MB to the Idgis controls
m nunSegment sPer CheckPoi nt 128 Fhe maximum time taken to perform a recovery scan. Fpr a mdumld-disk,
- it only takes one or two seconds to read 64MB. Performing kpemnts rarely
has the advantage of writing less “meta data” to the log, aisdigng that the
meta data is well clustered. It also means the root blockigemrless often.
Size of each segment - the unit of download from disk. If toalsnthen
performance becomes dominated by the head seek and rataliglay times
of the hard-disk. If too large then performance becomeslpdapendent on
the clustering of related data. As a very rough guide, sheglaal the product
m segnent Si ze 524288 of the.max.imum transfer rate of the hard-disk in bytes peosédctimes the
- seek time in seconds. E.g. for transfer rate = 50 MB/sec, sedkmsec then
product = 500k.
If an existing store is opened and the existing segment sizsrdt match the
segment size specified in the settings, then the requesjetese size will be
ignored.
m f or cel ncr enent MSSN false Force increment of the MSSN during start up

Table 2: LssSettings fields

element is not supportedeadseri al El ement returnsNuLL if no Seids. One good reason for this is to detect dangling Sedd-ref

serial element exists with the given Seid. ences reliably. It is also a pragmatic matter, because khesabr
Clients read from the stream with callsreadst ream which only records the next available value of a SeidHigh or SewdLo
has the following signature: rather than sets or intervals that are free which would behmuc
"t ReadStrean(voi d buffer. int more expensive. Itis also worth noting thgta64 bit addrpases
nunByt esRequest ed) ; for Seids is enormous and on hardware in the foreseeablesfutu

practically inexhaustible, so there is no justification totg the

This blocks on /O, trying to readunByt esRequest ed from trouble and expense of recycling Seid values.
the stream. It returns the actual number of bytes read whah m The LSS implementation takes some corresponding liberties
be less thamunByt esRequest ed, indicating the end of streamas far as ensuring allocation requests on the SAD are pesisist
was reached. More specifically, the recovery scan after a system cradhewl

d ose must be called on the returned stream after itis used (8ure that the SAD and SEM are consistent in the sense defined

cluding when exceptions are thrown by the LSS). It is alloeatabove, but may have lost some of the allocation requests.
to close the stream before reading any or all of the data.

7 Seid Spaces 7.1 Allocation of Seids

)) o oo Allocation requests are not regarded as part of a transeotio
The high 32 bits of a Seid is called tlseidHighand the low 32 {he | S5 and this is reflected in the API where the Seid-Space

bits is theSeidLow For each SeidHigh there are about 4 billiog,,§ seid allocation functions are available on the LSS witho
available SeidLow values. This is referred to aSeid-Space opening a transaction.

NoFe therefore that a Seid-Space is !d_entifieq by a paf“m Cr eat eSei dSpace returns a new and unuseel dHi gh that rep-

dng'h yalue and therg are about 4 billion Seid-Spaces dlaila resents a Seid-Space which can be used to allocate abolibd bil
Within the application layer on top of the LSS, there may @eids.

multiple, independent purposes for storing serial elesietrih

that case it can be harmful to allocate Seids from a singleajlo ‘Sei dHi gh Creat eSei dSpace() ;

allocator because over time Seid values are interleaveassicr

these unrelated purposes. The downside is that the meia-dajynen a new serial element is to be written to the LSS for the
(see section 17.1) used internally by the LSS to record the Gyt time, it is typically necessary to allocate a fresh Jeidit.

rent physical location of serial elements cannot be so&f8¥ This can be achieved with a call 101 ocat eSei d, providing a
clustered with the serial elements on disk. suitable SeidHigh value.

To combat this problem, each Seid-Space is regarded as an
independent space farivate Seid allocations. This is easily |Seid AllocateSei d(Sei dHi gh sei dHi gh); ‘
achieved by persisting in the LSS the followiggid Allocation
Data (SAD): Any number of threads can concurrently allocate Seid-Space

and Seids because the above allocation functions are tsefad
1. theSeid Allocation MagSAM) which is a map from Seid-

High to the next available SeidLow for the purpose of allo-
cating a new and unused Seid in the Seid-Space correspgn@-1 Allocation of affiliate Seids
ing to that SeidHigh; and

_ o ~ The following is an alternative Seid allocation functioraths
2. the next available S_eldH|gh for the purpose of allocaangpassed a Seid as an in-out parameter. The input value is an ex-
new and unused Seid-Space. isting Seid in the LSS and the output value is a new, unuseid sei
. that is deemed to be affiliated with the input Seid. Typicétly
Slq \lN'th crj’nodesdt storage spface o_\(/jerrl}eads', the LSS pfo"ﬁ'&ﬁ Seid will share a large portion of the prefix of the Seid-con
multiple, independent spaces for Seid allocations. sidered as an array of 8 bytes, and therefore the Seids wdl te

There is aconsistengé requirem_emr(]etween tg‘ehSE]Mfaleto be localised with respect to the 8-level hierarchical msgd
ig?ﬁulzsct)rhzllr:jy given Seid present in the SEM both the fo % index the physical locations of the serial elements.

o _ ljbool Allocat eAffiliateSei d(Sei d& seid); |
e its SeidHigh cannot be seen as unallocated according to the

next available SeidHigh for the store; and

This is useful for very large sets of serial elements whei it

« its SeidLow cannot be seen an unallocated according to BiECult to know a-priori how to partition the serial elensrinto

next available SeidLow for that Seid Space. separate Sr-:.id-Spa(.:es. o
Before this function can be used to allocate Seids, it is first

To ensure this, calls tori t eSeri al El ement implicitly update necessary to “bootstrap” by callimgeat eSei dSpace to allocate
the SAD as required. Therefore, strictly speaking, it camjpe a Seid space, thea | ocat eSei d to allocate a root serial ele-
tional for whether to explicitly call the Seid or Seid-Spate- ment in the space. Then, instead of calling ocat eSei d to
cation functions. Reasons why that may be useful are outiseleallocate additional serial elements, it can be preferableall
scope of this article. All ocat eAffiliateSei d. The Seid passed into the function rep-

There is no converse requirement. i.e. it is allowable fogda resents an “affiliate” Seid to which the new Seid returnedhsy t
regions of Seid Spaces to have been reserved (i.e. marked afiaction will be clustered.
located in the SAD), and yet corresponding serial elememt&d E.g. the affiliate may be a parent node in a tree of nodes.
actually exist in the SEM. For example, when serial elemards Al | ocat eAf fi | i at eSei d does a good job of allocating Seids for
deleted from the SEM, the Seids are never marked as availdf#es of nodes which grow over time from any position by addin
again in the SAD. Instead the Seid allocator will never rézsycchild nodes.

4

8 Transactions 8.3 Flushing transactions for Durability

Database systems conventionally provide the ACID progerti
The 'D’ stands fordurability which means that when a transac-
tion is committed it is made durable as part of the call to camm
by synchronously flushing the transaction to disk.

A transaction is associated withutativework on the LSS. i.e.
for creating, rewriting or deleting serial elements. Ascdissed
in section 3, transactions on the LSS are serialised usingtexm

During a transaction it is possible to delete or write any ham FI ushwhend ose can be called on an opened transaction to put

of serial elements. Writing a serial element encompassatiane it into a mode where it will synchronously flush the transactio

of a new serial element as well as rewriting an existing beria, 7
element 9 9 Secondary storage when the transaction is closed. It mlysben

called by the thread that originally opened the transactiime
subsequent! ose will only return after the transaction (and all
. . previous transactions) have been written to disk - at |leasira-
8.1 Opening a transaction ing to the Win32 calls. Note that the LSS file is opened with “no
write through cache” so in theory all flushed transactiorislve
durable. Note well that this may not actually happen in pcact
for hard-disks that have their local cache enabled.
Durability is particularly relevant to the management ofada

A client opens a transaction by callingpenTransaction
on the I LogStructuredStore. This returns a pointer to a
I LssTransact i on which is defined as follows:

struct |LssTransaction that relate directly to real world processes such as aiepleser-
{ vation systems, or financial systems. It is also importantife-
virtual void dose() = 0; s tributed transactions — typically involving a multi-phasEmmit
\\f: :: 32: Yg gszggfg\&hfga gtsreé;mf % protocol. In these cases, a transaction on a computer isiatesw
WiteSerial El enent (Seid seid) = 0; with the state of objects or events in the real world such asrnwh
virtual void DeleteSerial El enent(Seid seid) = a client withdraws cash from an ATM. Clearly it is necessany f
0 . . - the database to correctly record all such withdrawals. Hads
virtual void Del et eSei dSpace(Sei dH gh " . . .
sei dHi gh) = 0 to the durability requirement. In practice this means thvaire
D transaction must be flushed to disk as part of the commit.

Dedicated database servers may employ disk write caching

Note well that only the thread that call@denTransaction that promises to (eventually) write all data in the cacheisé.d

is allowed to call any of the methods on the returnedhis requires a battery backed up cache, and other fasijlgiech
| LssTransacti on. as intercepting the RST signal to avoid clearing the cache, a

use of ECM (Error Correcting Memory). Unfortunately “nor-
mal” hard-disks provide a disk write cache that is unsuddbt
8.2 Closing a transaction database servers, and this can't merely be fixed by using a UPS
Therefore it is necessary to disable the disk write cacheis Th
There is no concept of clients aborting a transaction. Ifraati May require changing jumpers on the hard-disk, or runnireg sp
begins a transaction then that thread (and only that thmead) Cial control software provided by the manufacturer.
eventually commit the transaction with a calldose. As such Unfortunately, with no write cache, disk flush operations be
there is no concept of roll-back during the normal operatibn come very expensive. With a stock hard-drive at 5400 to 7200
the LSS. Roll-back only occurs during recovery (i.e. whea tiRPM, there can be at most 50 to 70 disk flushes (i.e. transac-
store is opened when it was not previously closed gracéfully tions) per second. In many applications this is inadequate.

An exception may occur in the middle of a transaction. ForBY making durability optional, the CEDA LSS is also appli-
example, the thread that opened the transaction makes @ cafpble to the management of data that doesn’t need to be syn-
ReadSeri al El enent and this fails because of a low level I/O erchronised in real time with real world processes. Examptes a
ror, throwing aFi | eExcept i on. Itis vital that the client still calls editing of text documents, spreadsheets, statisticaysisaiweb
d ose even though an exception occurred. Otherwise the muk¥gwsing, GIS, multimedia databases, source code repiesito
will not be closed, and there could be a subsequent dead-lo@d CAD. In these cases the durability constraints can beed|
such as when the client tries to close the LSS. a little - such as by only flushing transactions to disk every f

The best way to ensure correctness in the face of exceptiorRECONds. Atomicity is still required to“ protect Ehe integrof
to declare an instance of @0t odl oser <I LssTransact i on> on N€ data. However, a transaction only “commits” in the safse

the frame in order to perform a transaction on the LSS withifl§fining an atomic unit of work, rather than demanding it go to
lexical scope. non-volatile storage as part of the commit. This of coursamse

Note that when such an internal I/O error occurs, the L%éﬁgfauff;; rsneac):):]c:jsseo?‘ovr\::)?keril;s ct))r; Z%Sctg”:;;'éuirﬁ'cgﬁgi?f:g l?_
will enter an “error” state, preventing any transactiormfrbe- y P PP

ing propagated to disk, even though the transaction is @xpli cations.
closed.
It is an error to close a transaction that is in the mi@.4 Deleting serial elements
dle of writing a serial element. In other words, after call-
iNg Wi teSerial El ement to write a serial element, the returned\n opened transaction can delete a serial element with angive
| O oseabl eQut put St reammust be closed before it is allowable>€id with a call to
to close the transaction.
If Fl ushwhend ose has previously been called on the trans-
action thenc ose will synchronouslylush this and all previous el et eSeri al El ement must only be called by the same thread

‘voi d Del eteSerial El ement (Sei d sei d) ‘

transactions on the LSS. that originally opened the transaction.
Closing a transaction destroys the transaction so it is @pt p It is an error to delete a serial element that is currentlynege
missible to call any of the methods again. for reading or writing.

5

8.5 Deleting a Seid space known Seid. This is the starting point for accessing all othe

. . . objects in the storeroor_selI D is the Seid for this root serial
An opened transaction can delete the Seid space associiited o,

. ; ement.
the givensei dH gh with a call to

Just after creating a new LSS, it is guaranteed that the &itist ¢
voi d Del et eSei dSpace(Sei dHi gh sei dHi gh) to Cr eat eSei dSpace will return the high 32 bits oRoor_sEl D. It
is then guaranteed that the first calldo ocat eSei d (passing in
The Seid space must be empty — ie. by callinge high 32 bits oRoor_sel b) will return RooT_SEI D.

Del et eSeri al El erent as required to delete all serial elements
in the Seid space. .
Del et eSei dSpace must only be called by the same thread thdiQ ~ Clustering

originally opened the transaction.
A developer using the LSS needs to be concerned with cluster-

.. . ing related data together, in order to maximise read peidoe.
8.6 Writing serial elements This is achieved by writing related data close together rimeti
Each time a serial element is written to the LSS, it must beitew (SO the related serial elements tend to be written to the sagwe
tenin its entirety - even if only a small part of its contenangges. Ments). Note that rewriting individual serial elementsravee
It will in fact be written to a completely new location withthe €an have the effect of upsetting the clustering (becauseyeba
store - i.e. at the “end of the log”. to serial elements are never made in-place). Reclusteinmgys

If that seems particularly wasteful then the serial elemeffivolves rewriting a collection of related serial elemetushe
should be smaller (i.e. finer grained). There is actuallyader end of the log. The background cleaner thread will autorafyic
off here. Small serial elements reduce the number of bytes tefragment the store. . .
written to disk when changes are made. However larger ssrial The easiest way to achieve good read performance is to parti-
ements may improve read performance because related ddsa t4on a very large database into mutually exclusive groupeadtl
to remain clustered together on disk. Also larger seriahelets €lements, where each group is characterised as follows:
reduce the various overall space and time overheads thasare . .
sociated with each serial element, such as the need to itslex i° The serial elements In a group are all closely rglatgq, mean-

j ing that when one serial elementis read from disk, it is likel

physical location. Note finally that the product of transfaete
and seek time for a modern hard-disk is quite large - of therord that other serial elements in the group will also be readen th

512k, so it is not efficient to write lots of small objects teklif near future;
they can become scattered over time. e There is a tendency for the serial elements in a group to be
To write a serial element with a given Seid, call the method written to the same segment. This is achieved by writing
WiteSerial El ement ON al LssTransaction batches of related serial elements to the LSS at a time. As
I O oseabl eQut put Stream: Wit eSeri al B enent (Sei d a corollary to this requirement, a group of relateq seried el
seid); ments can't be so large that it defeats the whole idea of them

being “clustered together”; and
This function is used to write new serial elements and also to
re-write existing serial elements. i.e. if the serial eletr@ready ~ ® Every serial element in the group shares the same high 32
exists then the previous rendition will be replaced by a nee.o bits of the Seid. This allows the LSS to achieve clustering
The returned a oseabl eCut put St r eam(which is nevemuLL) in its internal hierarchical map used to track the physical
can be used to write the content as a byte stream. Note that locations of serial elements.
the entire serial element must always be written with cails t

Wi t est reamwhich has the following signature: Over time there is an “increasing entropy” effect wheretezla

serial elements become spread around the disk. It can be very
void WiteStrean(const void+ buffer, int beneficial to recluster serial elements, particularlya@lements
nunByt es) ; used to implement directory structures. This is achieveddy

Note that if no data is written to the serial element then it cI:SaS|onaIIy rewriting all the relevant serial elements ® ti$S in

still deemed to exist a'single "batch’.
After writing the data, the & oseabl eQut put St r eammust be It is actually the excellent write performance of the LSSt tha

makes it economical to recluster related data togethereite
ﬁ1e LSS can provide very competitive read performance.

the next call towiteSerial El ement, Del eteSeri al El ement ,
Del et eSei dSpace Or d ose on the transaction.

It is an error to callwiteSerial El enent for a serial ele- 11 Supported Platforms
ment that is currently opened for reading (perhaps by areiie

thread). The CEDA LSS is currently supported on all flavors of 32 bit
Wi teSerial El ement must only be called by the same threaglindows (i.e. Win95, Win98, WinXP etc) and will run as a 32
that originally opened the transaction. bit application under all x64 versions of Windows. The stisre

written to the hard-disk (which could be FAT32 or NTFS) as a
. single file. This file grows as required to accommodate new dat
9 Boot strapplng a store written to the store. It can also be used with a raw partition.

It is common for a serial element to store (within its byteatn

content) the Seids of other serial elements. For exampkethg? MSSN

could represent the “children” in a whole-part hierarchyobf

jects. MSSN stands foMissing Shutdown Sequence Numbdris is a
Typically an application using the LSS will need to write sormvalue stored in the root block of the LSS. It equals the nunober

sort of “root” registry or directory object to the store with times that the store has not been gracefully shutdown avéfet

6

This is zero if the store has always been properly closedh@b f data. The LSS properly supports applications that aréewri
the store is check pointed and flushed correctly). A largaevabound for prolonged periods.
indicates that there have been many power failures or teetcli When the LSS is created or opened, a path to a directory for
software is not closing the LSS correctly. the delta files can optionally be provided. LSS delta-fildaui-

The MSSN is useful for correctly mapping Seids to a larggimatically be written to this directory. These files are edm
global address space that encompasses objects stored gn mamnnn.Issdelta where nnnnnn is a sequence number, called a
computers. Single user applications of the LSS have no reeeddheck Point Sequence Numig@PSN).

the MSSN other than a simple diagnostic. Note that the path to the main LSS file is independent of the
When the store is first created the MSSN is initialised to zefgnth to the directory of delta-files. They could easily be dn d

The value persists and is only incremented during recovety iferent hard-disks.

is found that the store wasn't previously shut down gra¢eful 14 ay0id limiting the write performance of the system, it is

recommended that a separate local hard-disk be used fargstor
the deltas. This will allow the deltas and the LSS file to bet-wri
ten concurrently. It also means either hard-disk can faihouit

Consider a thread that quickly generates large amountstaf é%smg data. L ' . ,
that needs to be written to disk, and the thread writes thesdote that with virtual file systems it is easy to have deltesfile

changes using a large number of fine grained transactioris. F{!tien directly to a remote site. However that may expose th

thread is considered to be a “producer” and the LSS is the-“crrS t0 network outages. A better strategy may be to writeadelt
sumer” to a local hard-drive, and a separate process is resporisible

Initially all 32 segments in the LSS segment cache wﬁPPy,‘”g_the_Se files to aremote site.. During network outages t
be available to store the data written to the LSS. Therefcﬂ@p“?aﬂon IS ablg tolcont_mue running.]
calls to write data to the Ol oseabl eut put Stream (returned A Single delta-file is written for each check point on the LSS.
by a call towiteSerial & ement) will simply store the data The LSS stores a CPSN in the main LSS file. This helps ensure

in memory (in the segment cache) and return quickly. Hogat deltas are applied in the right sequence. The CF?SNtItyirec
ever, once the segment cache is full of “dirty” segmems@sqorresponds to the sequence number used for naming the delta
ments that need to be written to disk), calls to write datarto files.
| O oseabl ecut put St r eamwill block on disk 1/O. With the default settings the LSS performs a check point af-
Consider further that in the layers above the LSS, there are @l Writing 128 segments (or 64 MB). A check point is also per-
texes (ie locks) used for concurrency control of higherlleata formed whenever the store is closed.
structures or objects. The thread that generates large rmou Delta files respect check point boundaries. Note in turn that
of data may acquire these locks. The problem then is thagthelseck point boundaries respect both flush unit and tramsacti
locks could be held while the thread blocks on 1/O. This coulmundaries.
make the system unresponsive, or reduce concurrency. ldwou
be better if the thread avoided tying up system resourcekewhi
blocking on /0. ; ;
To solve this problem the LSS provides a facility for ﬂow]'5 Hot Standby COﬂfIgUI’atIOH

control between “producer” and “consumer”. The thread

has the option of calling the following functions defined iﬁ‘s Ior}g as the main appllcatlon IS nqt running, (anq the main
| LogSt r uct ur edst or e LSS file is not opened) it can be copied using the file system.

This creates a “level 0 backup”. The copy will of course have
/1 Blocks until it is appropriate for the the same CPID and CPSN, recorded in the root block. However,

/1 producer to begin witing changes to i mifi ; ;
/1 the LSS again (because the LSS has :)t}?;iiiirt;vo significant problems with making a completeycop

/'l written enough segnents out to disk).
voi d Bl ockUnti| Lowat er Mark() const;

13 Throttle control

/1 Returns immediately, and indicates whether e [f the store is large then it can take a long time;

/1 the producer has witten enough changes
/1 to the LSS such that it should call

// Bl ockUntil LowwaterMark() in order to wait
// for the LSS |lazy witer to "catch up"
bool ReachedH ghWat er Mark() const;

e The application that reads/writes the store can’t be runnin
while the copy is made.

Once a copy has been made the delta-files can be used to very
before it acquires locks on valuable system resources. @en efﬂment.ly and safely bring the.copy Into syne W“'th the mftmre.
ing the period it is waiting for the LSS to catch up (by writing Consider thatwe have previously created a “standby” staye (

dirty segments in the segment cache to disk), it avoids hgldfaking a file system copy). Let the 24x7 application be config-
ured to automatically create the delta-files in the normal wat

LssApplyDeltas.exe be run repeatedly so it applies dettdke
“standby” as soon as they become available. At quiescere th
14 Backup and hot standby for the LSS standby will match the main store.
Note that this process is compatible with 24x7 operatiomef t
The LSS optionally supports hot standby and incrementadin store (because it never needs to be shut down).
backup. It is easy to create any number of “standby” stores in various
Note however that at present, hot standby has fairly relaxs&eges of how up to date they are, because deltas are not con-
assumptions about how up to date the standby store must besumed when they are applied to a store. Furthermore thetstand
The backup / hot-standby system is compatible with 24x7 agieres and the deltas can be backed up to tape etc. Thereiore t
eration of a store which continuously reads/writes largeams approach provides a great deal of flexibility.

The “producer” thread should call ockunt i | Lowmat er Mar k

7

L the index structure itself in the log; typically this is vieih dur-
Argument Description ing regular check points. In [3] the index forms the majoofy
what is referred to as meta-data, and it is pointed out th&8a L
is very space efficient in the sense that the amount of meta-da
written to disk can be comparatively small compared to otiper
proaches. Recovery to a valid snapshot position simplyiresju
’ a forward scan through the log from the last valid check poajmt
[Optional] to the last snapshot record to bring the index up to date.
A “one past end” value of the cpsn Most DB systems employ data that is read or written in pages,
to specify what delta files should b and atomicity of transactions is achieved by the technicfue o
applied to the level 0. Write Ahead LoggingWAL) of changes to the data pages to a
separate log file, which can be scanned during recovery as re-
quired to undo/redo partially completed transactions.

The LSS achieves excellent write performance by treatieg th

The path to an existing LSS store
called the “level 0"
the path to the directory containing
the delta-files

| evel Opat h

del tasDirPat h

cpsn2

D

Table 4: LssApplyDeltas command line args

16 Utility Console Applications log itself as the data! Therefore all writing occurs at the efthe
log, allowing for continuous writing with minimal movemenf
16.1 LssApplyDeltas.exe the disk head.

The log is divided up into relatively large 512k pieces (edll
A console application called LssApplyDeltas.exe is abledply segments). Reading and writing at this coarse granularity m
deltas to an existing LSS store, called a “level 0”, to bringore imises disk head seeking overheads.
up to date. There are four background threads that take on respomgibili
On the command line two or three arguments may be specifiggt:writing segments, flushing the log, check pointing therest
((setting the point from which a recovery scan is requiredj an
cleaning partially fill segments to avoid fragmentation.
The arguments are described in Table 4. The half open inter-
val [cpsnl, cpen2) is applied. cpsnl is determined aut@aldti 17 1 Recoverable Packet Map
from the level O file. Note that delta files are applied up bt no
including cpsn2. The Recoverable Packet MafRPM) is an 8 level hierarchical
LssApplyDeltas can optionally be passed the cpsn2 parame@p keyed by 64 bit Seid used to record the locations of salrial
ter to limit the number of deltas to be applied. Currentlstisi ements in the store. Ti&egment Utilisation TabkSUT) records
only at the course granularity of check-point boundarigsttje the utilisation of every segment in the LSS. Both of thesa dat
future it is expected that it will also be possible to speeifjate/- structures are only updated on disk during a check pointckhe
time stamp for more precisely controlling what transactiane points are normally performed after writing 64MB to the stor
applied] This places an upper bound on the time required for a recovery
If the delta files directory contains the delta files from 0 oscan.
wards, and there is no level 0 LSS file, then LssApplyDelias.e
will actually create a level O from the_delt? fiIe;) 17.2 Assumptions on the hard-disk
The LSS always uses the extension “partial” for the current
delta file being written. This is renamed with the extensitss-* Most databases providing ACID properties assume that tite ha
delta” after the delta file has been completed. It is assutmad isk promises atomicity at the granularity of disk sectovki¢h
this approach is sufficient to ensure that LssApplyDeltas'wvoare typically 512 bytes), and will always write disk sectonshe

‘ LssAppl yDel tas | evel Opath del tasDirPath [cpsn2]

apply a partially written delta file. platter in the same order they were written to the OS.
LssApplyDeltas is idiot proof in that it will never apply an Unfortunately many hard-disks on the market fail to mees¢he
inappropriate delta. requirements.

The LSS goes to a lot of trouble to avoid data loss without mak-
ing such strong assumptions on the hard-disk. It is perbiessi
for disk sectors to only be partially written, and also foiitimg
This console application can be used to compare two LSSsstdfethe platter to be out of order. This is achievable becabse t
to see if they are (logically) equivalent - i.e. they represbe LSS doesn’t use Write Ahead Logging (WAL), and it employs
same SEM. This is useful for validating the backup system. @28 bit check point identity testing as well as a 32 bit CRCo&he
the command line, pathl1 and path2 are paths to two differgst Lon “flush units” that are read during the recovery scan.
files to be compared: The root block contains two independent copies of the root
block data, written in strict alternation, and CRC checked.

16.2 LssCompare.exe

‘ LssConpare pathl path2

17.3 Comparison to conventional database sys-

17 LSS implementation tems

Most databases use the ARIES algorithm (or similar). This al
A Log Structured Storg[1] and [3]) stores all data in a singlelows for in-place changes to be made to binary objects on disk
ever-growing linear sequence of records (calledabe Records However it must uséVrite Ahead LoggingWAL) to support
in the log are never overwritten, making it straightforwaed atomicity. This has a number of disadvantages:
support transaction atomicity by simply writing speciahpshot
marker records to the log. Since data items are never modtified e itis vital that changes be written (and flushed) to the log be-
place, the system must maintain an index structure thatdsco fore the corresponding changes are made to the “real” data.
the current physical location of a given data item. A LSS rdso Unfortunately most off the shelf hard-disks need to have

8

their local cache disabled to ensure that data is not writtdiis out itself (because it stores the current CPSN in itd roo
in an order that conflicts with the WAL assumption; block). This, together with the CPID validation makes LssAp

.)) plyDeltas.exe “idiot proof”.
e the write performance is essentially halved because al

changes must be logged - i.e. written to disk twice; .
g 99 17.5 Lazy Writer

e writing changes in-place means the disk head needs to s_?
around a lot. Sophisticated techniques are required ta@eedu
these problems. For example dirty pages are typically
dered so they can be written to disk by a lazy writer thread

ek .

he LSS uses a background thread called the “Lazy writer” to

rite dirty segments in the segment cache to disk. Therefare
ead that opens a transaction and writes some serial eteme

minimise disk-head seek times (this is called elevator-se&ﬂ“ typically only write the byte stream to a buffer in mem-

ing). In practice, the product of transfer rate and seek ti P’ allowing it to complete the transaction very quicklythaut

for a modern hard-disk is quite high - e.g. 512 kByte. Ther locking on /0.

fore it is very inefficient for the disk head to seek arounﬂ
only writing a small number of bytes at a time; and :

It is important to understand that ending a transactionicnapl
y commits it, but only in the sense of defining an atomictuni
of work. The actual data is written to disk in the background.
e writing changes in-place usually means that objects can'When writing larges amounts of data, the segment cache can
vary in size over time. Therefore objects that contain gginbecome full of dirty segments, and in that case it is possifle
and other variable sized data either need to reserve a fifeglthread performing a transaction to block on 1/O.
size buffer, and impose a limit on the size, or else store the
string separately. Storing the string separately hurstelu 17 6 Cleaning
ing.
J When the LSS is opened, a background thread is automatically
A log structured store eliminates these problems. Write pstarted that cleans segments with a poor utilisation (ie¢ovb a
formance is typically limited only by the maximum transfate preset threshold). The data on a segment to be cleaned isrwrit

of the hard-disk. to the end of the log, allowing the segment to be returned to an
internal free segment pool. Because of this, users of the LSS
17.4 Check pointing never need to concern themselves with fragmentation ottine.s

When the store is created or opened, the cleaner threshold can

The LSS internally uses a hierarchical map to track the physibe specified. This defaults to 85% meaning that all segmkeats t
locations of all serial elements in the store. It also masta are less than 85% utilised will be cleaned.
information about the current utilisation of all the segrsen The cleaner is provided an ordered list of segments to clean

All this information is itself written to the root block oréHog, after each check point.
but only during a “check point”. The root block is updatedngsi
Challis’ algorithm ([2]).

A check point is performed at the following times: References

e after the store is opened and a recovery scan is required{1] Mendel Rosenblum and John K. Ousterholihe Design
and Implementation of a Log-Structured File Syst&@M

o after writing 128 segments (i.e. 64MB) of data to the end of Transactions on Computer Systems, 1992, Volume 10, pages
the log; and 1-15.

e when the store is closed,; [2] Challis, M. F., Database Consistency and Integrity in a
Multi-User Environment Databases: Improving Usability

A recovery scan is performed when the store is opened and it gpq Responsiveness, Academic Press, pages 245-270, 1978
was found that it had not previously been closed gracefuiiy.

that case it has to scan all segments in the end of the logtiacd3] David Hulse and Alan DearleA Log-Structured Persistent
last check point. This allows it to recover all committechisac- Store Proceedings of the 19th Australasian Computer Sci-
tions and roll back any uncommitted transactions. ence Conference, 1996, pages 563-572.

The maximum time for the recovery scan is bounded by the
time taken to read the segments at the end of the log since the
last check point. The time to read 128 segments only takes a fe
seconds on a modern hard-disk.

17.4.1 Check point identifiers

The LSS generates a 128 bit GUID called a Check Point Identifie
(CPID) for each check point. The current CPID is stored in the
root block of the LSS. Each delta-file stores an input CPID and
output CPID. A delta file may only be applied if its input CPID
matches the current CPID of the store. The store’s CPID is the
set to the output CPID defined by the delta-file.

Both the CPID and CPSN are used to validate a delta-file (i.e.
to see whether it is allowed to be applied to the store). Nwdé t
two stores can share a common ancestry, then diverge. The use
of CPIDs ensures that delta-files are never applied inctyrec

Note that the first CPSN to be applied isn't specified on the
command line to LssApplyDeltas.exe. Instead the LSS cak wor

9

