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Site identifiers

It is assumed that each site is uniquely identified with a site identifier.  Let S be the set of site identifiers.

Vector times

Let N be the set of natural numbers (ie non-negative integers).  A vector time v is a map 

v : S ( N
Definition:  The vector time v( satisfies ( s ( S, v((s) = 0.

Subset, intersection and union on vector times

Definition:  For vector times v1,v2,   v = v1 ( v2 denotes the vector time satisfying 


( s ( S,  v(s) = max( v1(s), v2(s) )

Definition:  For vector times v1,v2,   v = v1 ( v2 denotes the vector time satisfying 


( s ( S,  v(s) = min( v1(s), v2(s) )

Definition:  For vector times v1,v2,   we write v1 ≤ v2  if  ( s ( S,  v1(s) ≤ v2(s)

Note

· (v,  v ( v  =  v

· (v,  v ( v  =  v

· (v1,v2,  v1 ( v2  =  v2 ( v1
· (v1,v2,  v1 ( v2  =  v2 ( v1
· (v1,v2,v3,  (v1 ( v2) ( v3  =  v1 ( (v2 ( v3)

· (v1,v2,v3,  (v1 ( v2) ( v3  =  v1 ( (v2 ( v3)

· (v1,v2,v3,  (v1 ( v2) ( v3  =  (v1 ( v3)  (  (v2 ( v3)

· (v1,v2,v3,  (v1 ( v2) ( v3  =  (v1 ( v3)  (  (v2 ( v3)

· (v,   v(  ≤  v

· (v,   (v( ( v)  =  v

· (v,   (v( ( v)  =  v(
· (v1,v2,   (v1 ( v2)  ≤  v1
· (v1,v2,   v1  ≤  (v1 ( v2)

· (v,   v  ≤  v

· v1 ≤ v2  &  v2 ≤ v1   (   v1 = v2
· v1 ≤ v2  &  v2 ≤ v3   (   v1 ≤ v3
· v1 ≤ v  &  v2 ≤ v  (   (v1 ( v2)  ≤  v
Identification of operations

Each operation is assumed to be generated at exactly one site.  Each site independently assigns a zero based sequence number t to each operation generated at that site.

Definition:  Let op(s,t) denote the operation generated at site s with sequence number t.

Extent of a vector time

Definition:  The extent of vector time v is the set of operations denoted by (((v) satisfying


(( (v) = { op(s,t) | t < v(s) }

This definition relates to the whole purpose for vector times - for a given operation O, we describe its execution context using the vector time v satisfying ec(O) = ( (v).  This is a summary of the complete set of operations that have been executed prior to O.

Note the following

· ( (v2) \ ( (v1) = { op(s,t) |  v1(s) ( t < v2(s) }

· ( (v() = {}

· ((v1 ( v2) = ((v1) ( ((v2)

· ((v1 ( v2) = ((v1) ( ((v2)

· v1 ≤ v2  ((   ((v1) ( ((v2)

Precedes relation on operations

Definition: Let Ob be an operation originally generated on site B.   We write Oa ( Ob if Oa was executed on B before Ob was generated on B.

Definition:  Oa and Ob are concurrent (written Oa || Ob) if Oa ( Ob and neither Oa ( Ob nor Ob ( Oa
Definition:  The system enforces Causality Preservation if 

Oa ( Ob    (     Oa is executed before Ob on all sites

Claim:  Causality preservation    (    ( is a transitive relation
Proof:  Suppose Oa ( Ob and Ob ( Oc.   Let Oc be generated on site C.  Ob ( Oc so Ob was executed on site C before Oc was generated.   By causality preservation and Oa ( Ob, we know that Oa is executed before Ob at all sites, and in particular at site C.  Therefore Oa was executed at site C before Oc was generated at site C, so we deduce Oa ( Oc.

Execution context of an operation

Definition:  Vector time gc(O) denotes the generation context of operation O such that ((gc(O)) is the set of operations that had been executed prior to the original generation of O.

It follows from the definitions that


Oa ( Ob   (   Oa ( ((gc(Ob))

Definition:  Vector time ec(O) denotes the execution context of operation O such that ((ec(O)) is the set of operations that have been performed prior to execution of O.

Claim:  Causality preservation    (    gc(O) ( ec(O)

Claim:   Oa ( Ob   (   Oa ( ((ec(Ob))

Proof:



Oa ( Ob
(
Oa ( ((gc(Ob))




(
Oa ( ((ec(Ob))

It is assumed that a site generates operations in the context of previously generated operations at that site.  Formally this means  


t1 < t2   (   op(s,t1) (  op(s,t2) 

Claim:  Oa || Ob    (   Oa.s  ( Ob.s

Proof:   

Suppose Oa || Ob  and Oa.s  = Ob.s

if Oa.t < Ob.t


Oa ( Ob  
(because t1 < t2   (   op(s,t1) (  op(s,t2))



( contradiction to Oa || Ob

else if Ob.t < Oa.t



Ob ( Oa 
(because t1 < t2   (   op(s,t1) (  op(s,t2))



( contradiction to Oa || Ob

else



Oa.t = Ob.t



Oa = Ob
(because Oa.s  = Ob.s and Oa.t = Ob.t)



( contradiction
(because Oa || Ob  (  Oa ( Ob)
Aggregate intersection and union on sets of vector times

Definition:  For set of vector times V,   v = ((V) denotes the vector time satisfying 


( s ( S,  v(s) = min { v'(s) | v' ( V }

Definition:  For set of vector times V,   v = ( (V) denotes the vector time satisfying 


( s ( S,  v(s) = max { v'(s) | v' ( V }

Causally valid vector times

Definition.  Vector time v is causally valid if 


O1 ( ( (v),  O2 ( ( (v)   (    ( (O2 ( O1)

or equivalently


O2 ( ( (v) and O1 ( O2    (    O1 ( ( (v)

Taking the negation, vector time v breaks causality if  


( operations O1, O2 st  O1 ( ( (v) and O2 ( ( (v)  and  O1 ( O2
Claim:  Causality preservation   (    for every operation, ec(O) is causally valid

Each site is assumed to have a linear sequence of operations that have been executed at that site called a history buffer.  For a given site, let vh denote the vector time whose extent describes the current contents of the history buffer.
Let v be a causally valid vector time satisfying v ( vh.  It can be proven that it is possible to transpose adjacent, concurrent operations within the history buffer to separate it into a prefix and suffix such that the set of operations in the prefix equals ((v) and the suffix corresponds to ((vh) \ ((v).   Furthermore no operation in the suffix causally precedes an operation in the prefix.
More specifically it won't be necessary to ever transpose a pair of contextually serialised operations [O1, O2] where O1 ( O2.

Claim:  v1,v2 are causally valid   (   v1 ( v2 is causally valid

Proof:


Let v = v1 ( v2

Let O1,O2 be operations with O2 ( ( (v)  and  O1 ( O2

Need to show O1 ( ( (v)

( (v) = ((v1 ( v2) = ((v1) ( ((v2)


O2 ( ((v1)
(because O2 ( ( (v) = ((v1) ( ((v2))


O2 ( ((v2)
(because O2 ( ( (v) = ((v1) ( ((v2))


O1 ( ( (v1)
(because O2 ( ((v1) and v1 is causally valid)


O1 ( ( (v2)
(because O2 ( ((v2) and v2 is causally valid)


O1 ( ((v1) ( ((v2)
(because O1 ( ( (v1)  and  O1 ( ( (v2))


O1 ( ( (v) 
(because ( (v) = ((v1) ( ((v2))

Claim:  v1,v2 are causally valid   (   v1 ( v2 is causally valid

Proof: 
Let v = v1 ( v2

Let O1,O2 be operations with O2 ( ( (v)  and  O1 ( O2

Need to show O1 ( ( (v)

( (v) = ((v1 ( v2) = ((v1) ( ((v2)



if O2 ( ( (v1)



O1 ( ( (v1)
(because O2 ( ((v1) and v1 is causally valid)



O1 ( ( (v)
(because ( (v1)  (  ((v1) ( ((v2)  =  ( (v))



else




O2 ( ( (v2)
(because O2 ( ((v1) ( ((v2) and O2 ( ( (v1))



O1 ( ( (v2)
(because O2 ( ((v2) and v2 is causally valid)



O1 ( ( (v)
(because ( (v2)  (  ((v1) ( ((v2) = ( (v))

It follows therefore that


( v ( V, v is causally valid   (  ((V) and ((V) are causally valid

Formulation that allows more sites over time
Usually a vector time is defined with respect to a fixed number of sites in the system.  In practice we need a definition that naturally allows for new sites to be added over time.

Definition:  A vector time v is a set of (s,t) values where s is a site identifier and t is a positive integer, and the s values are never repeated.  We write sites(v) for the set of s values in v.   We write v(s) to retrieve t for given s.  v(s) is defined to be zero for s ( sites(v)

It is straightforward to adjust the previous definitions to avoid reference to some fixed set of states S.

v1 ( v2    (  ( s ( sites(v1),  v1(s) ( v2(s)

For vector times v1,v2,   v = v1 ( v2 denotes the vector time satisfying 


sites(v) = sites(v1) ( sites(v2)


( s ( sites(v),  v(s) = max( v1(s), v2(s) )

For vector times v1,v2,   v = v1 ( v2 denotes the vector time satisfying 


sites(v) = sites(v1) ( sites(v2)


( s ( sites(v),  v(s) = min( v1(s), v2(s) )

Delta vector times

A delta vector time represents a change to a vector time which can be useful to reduce network bandwidth.
Definition:  A delta vector time (v = v2-v1 where v1 and v2 are vector times is defined as follows


(v  =   { (s,t) ( v2 |  t ( v1(s) }  (  { (s,0) | s ( sites(v1) \ sites(v2) }

and 
sites((v) = { s | (s,t) ( (v }
We define v1+(v as follows.


v1 + (v  =  { (s,t) ( v1 |  s ( sites((v) } ( { (s,t) ( (v | t > 0 }

Claim:   v1+( v2-v1) = v2
Proof:


sites(v2-v1) = { s | (s,t) ( v2  and t ( v1(s) }  (  sites(v1) \ sites(v2)

(()
Suppose (s,t) ( v1 + (v2-v1) 

so (s,t) (  ( { (s,t) ( v1 |  s ( sites(v2-v1) } ( { (s,t) ( (v2-v1) | t > 0 } )

if (s,t) ( (v2-v1) and t > 0



(s,t) ( v2 and  t ( v1(s)


else



(s,t) ( v1  and  s ( sites(v2-v1)



s ( sites(v1)
(because (s,t) ( v1)



t > 0

(because (s,t) ( v1)



(s,t) ( (v2-v1)



if s ( sites(v2)




s ( sites(v1) \ sites(v2)




s ( sites(v2-v1)  (  contradiction



so s ( sites(v2)



Suppose v1(s) = t ( v2(s)




(s, v2(s)) (  (v2-v1) 




so s ( sites(v2-v1)  (  contradiction


so v2(s) = t



so (s,t) ( v2
 (()
Suppose (s,t) ( v2

if t ( v1(s)


(s,t) ( v2-v1




t > 0

(because (s,t) ( v2)


(s,t) ( v1 + (v2-v1)

else


t = v1(s)



so (s,t) ( v1


Suppose s ( sites(v2-v1)



((s,t) ( v2  and t ( v1(s))  or  (s ( sites(v1)  and  s ( sites(v2))




( contradiction



So s ( sites(v2-v1)


So (s,t) ( { (s,t) ( v1 |  s ( sites(v2-v1) }


So (s,t)  (  v1+( v2-v1)

We can define addition of delta vector times (v = (v1 + (v2, satisfying (for any given vector time v)


(v + (v1) + (v2   =   v + ((v1 + (v2)

Note that addition of delta vector times doesn’t commute. 

It can be show that   


(v1 + (v2  =  (v2  (  { (s,t) ( (v1 | s ( sites((v2) }

Vector time implementation

To facilitate fast look up of a vector time, a suitable implementation is a red-black tree.  However a delta vector time has no need for fast look up, and therefore may be more efficiently stored using a variable size array of (s,t) pairs.

We can define an add method on a vector time in pseudo code as follows

v.add(s,t)

{

    if (v.hasentry(s)) 

    {

        v.remove(s);

    }

    if (t > 0) 

    {

        v.insert(s,t);

    }

}

Applying a delta to a vector time simply involves calling add(s,t) for each (s,t) in the delta.

We can define an add method on a delta vector time in pseudo code as follows

(v.add(s,t)

{

    if ((v.hasentry(s)) 

    {

        (v.remove(s);

    }

    (v.insert(s,t);

}

This may lead to a delta that has more (s,t) entries that it needs - because it doesn’t check for redundancy w.r.t the original vector time to which the delta applies.   
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