Conventional approaches to distributed computing
David Barrett-Lennard
16 Oct 2016

The fallacies of distributed computing
One of the prime motivations of CEDA is to support distributed data management, despite the fact that networks tend to be unreliable, have high latency, low bandwidth etc. Programmers new to distributed applications invariably make the following false assumptions
1. The network is reliable.
2. Latency is zero.
3. Bandwidth is infinite.
4. The network is secure.
5. Topology doesn't change.
6. There is one administrator.
7. Transport cost is zero.
8. The network is homogeneous.
[bookmark: _GoBack]Some impossibility results in distributed computing
Two generals' problem
There are some impossibility results in distributed computing, such as the two general's problem.
It is impossible to  coordinate  simultaneous  action. This doesn't contradict atomic commit protocols like 2PC which allow for coordinating eventual agreement. i.e. under 2PC all nodes eventually agree to commit or abort the transaction (assuming they eventually recover).
Armies want consensus to attack at the same time
Messages may be lost
(but not tampered with)
IMPOSSIBLE

FLP Theorem
Fischer, Lynch and Patterson 1985. Won the Dijkstra award given to the most influential papers in distributed computing.
The FLP theorem states that in an asynchronous network where messages may be delayed but not lost, there is no consensus algorithm that is guaranteed to terminate in every execution for all starting conditions, if at least one node may fail-stop.
Asynchronous network

No lost messages

At least one node may fail-stop

no consensus algorithm is guaranteed to terminate in every execution for all starting conditions
No upper bound on time to send/process/respond to messages
process fails by stopping forever

Asynchronous: There is no upper bound on the amount of time processors may take to receive, process and respond to an incoming message. Therefore it is impossible to tell if a processor has failed, or is simply taking a long time to do its processing.
Processors are allowed to fail according to the fail-stop model – this simply means that processors that fail do so by ceasing to work correctly.
Independent recovery
No independent recovery means that nodes are unavailable even though they haven't failed.
Theorem:
There exists no distributed commit protocol with independent process recovery in the presence of multiple failures.
CAP theorem
Another impossibility result, the CAP theorem says you can't have all three of Consistency, Availability and Partition Tolerance. Under OT we give up on strong consistency and only require consistency once all operations have been received at all sites (i.e. we allow temporary divergence and only require eventual consistency).
(strong)
Consistency
Availability
Partition Tolerance
Pick two
Every non-failing node can respond
Distributed object behaves as though all operations are performed in some total order and each operation looks as though it is completed in a single instant
3PC
OT
2PC
Paxos

Distributed transactions are evil!
Distributed transactions are slow and error prone. It's easy to find negative comments about them on the Internet
It comes as a shock to many, but distributed transactions are the bane of high performance and high availability
...Yes they’re evil. But are they a necessary evil – that’s the real question. ...I believe they are indeed the worst sort: necessary. We’re all dooooooomed......
... at the end of the day, however, it is impossible. Nature finds a way to make your life miserable, and all because of these horrid distributed transactions.
(some humorous comments on the Internet)
The dangers of replication
In 1996 Jim Gray, Pat Hellend, Patrick O'Neil, Dennis Shasha published a paper in 1996 on Update-anywhere-anytime transactional replication, showing under quite general assumptions that there is a scalability problem:
1000x increase in deadlocks or reconciliations
10x increase in nodes and traffic

Their conclusions were somewhat pessimistic:
...this is a bleak picture, but probably accurate

...explains why there are no high-update-traffic replicated databases with globally serialisable transactions

CEDA avoids certain assumptions made in this paper and allows for merging which is linear in the number of nodes and traffic.
2 Phase Commit (an atomic commitment protocol)
For distributed transactions (an Atomic Commitment Protocol)
Coordinator
Phase 1
Phase 2
Cohort1
Cohort2
prepare
prepare
vote
vote
Coordinator
Cohort1
Cohort2
outcome
outcome
ack
ack

The protocol assumes that there is stable storage at each node with a write-ahead log, that no node crashes forever, that the data in the write-ahead log is never lost or corrupted in a crash, and that any two nodes can communicate with each other.
In phase 1:
* The coordinator sends a PREPARE message to all cohorts
* Each cohort may respond with an ABORT-VOTE, or stably record everything needed to later commit the transaction and respond with a COMMIT-VOTE
The coordinator records the outcome in its log (COMMIT iff all cohorts voted to COMMIT, ABORT otherwise).
In phase 2:
* The coordinator sends an outcome message (COMMIT-VOTE or ABORT-VOTE) to all cohorts
* The cohort writes the transaction outcome to its log (after this, it never needs to ask the coordinator for the outcome again if it crashes), and replies with an ACK message.
The coordinator writes an END message to its log, which tells it not to reconstruct in-memory information about the transaction on recovering after a crash.
CAP under 2PC or Paxos
2PC: If the coordinator and a cohort crash then other cohorts may block indefinitely while holding mutexes and they can't commit or abort.
Paxos: Unavailable if a majority (over half of the nodes) can't communicate.
Consistency
Availability
Partition Tolerance

CAP under 3PC
If the network partitions 3PC can give inconsistent states
Consistency
Availability
Partition Tolerance

Location transparency
There are fundamental differences between in-process and inter-process communication that ruin the whole premise of location transparency.
Process A
Proxy
App1
Process B
Object
In-process
Infallible
Latency = 10ns
Inter-process
Fallible
Latency = 100ms
App2

image1.jpeg

image2.png

image3.jpeg

image4.png

