Xcpp Macro Preprocessor

David Barrett-Lennard
Cedanet Pty Ltd
Perth, Western Australia
david.barrettlennard@cedanet.com.au

March 24, 2010

Abstract

@def add(x,y) = xt+y
int fO) { return 3xadd(5,2); }

Xcpp includes a powerful macro preprocessor. This paper de
scribes the preprocessor directives with example usage. Before translation

1 Overview it) { retun 3x5+2; }

After translation
The xcpp macro preprocessor is applied to the source code be-
fore subsequent compilation by a standard C/C++ compilee. T
directives always begin with thecharacter. In the code exam92 3 Macro return types
ples presented in this paper red syntax colouring is useitiése
directives and blue for the standard C++ keywords. The return type of a macro can be specified. In the following
To illustrate the preprocessor self contained code exanapke €xample itis stipulated thatid(x,y) ~returns annt . This causes
shown before and after translation. The appendices defmeX@pp to perform calculations at compile time in order to ceer
grammar using EBNF. the return value.

@def int add(x,y) = xty
int fO) { return 3xadd(5,2); }

2 @def directive

Before translation
2.1 Simple macros

int f() { vreturn 3x7;}

A macro can be defined and then referenced any number of time<

further down in the translation unit: After translation
@def m = 100 This can have a number of advantages:
/I This is a comment . . .
int f0) { return m+m/2; } e It can avoid the problems with macro expanded expressions
- needing additional brackets in order to be processed cor-
Before translation rectly;
// This is a comment e It helps to self document the intent;

int f() { return 100+100/2; }

_ e The xcpp compiler validates the type, and provides useful
After translation error messages when type checking fails; and

We say that macrmhas beeinvoked twice in the above exam- ¢ The generated code is more succinct.
ple. Often a macro is defined in a header file so it can be invoked

from multiple source files. We refer to the substitutionrgjrioo
as thebody of m 2.4 Macro argument types

The translation maintains existing indentation and commenthe types of the formal arguments of a macro can optionally be
Macro definitions are stripped away, and all invocations ofsgecified. This leads to eager evaluation of the arguments by
macro after the point of definition result in substitution ¥ e xcpp preprocessor at the point of invocation. The advan-

body. tages described above for strong typed return values alsy ap
to strongly typed formal arguments. Here is an example:
2.2 Macro arguments @def multiply(int x, int y) = x *y

int f() { return multiply(1+2,4); }

In similar fashion to C/C++#define macro definitions, xcpp
macros can take any number of formal arguments. By default Before translation
the macro expander performs substitution without regardhi®
semantics of C/C++ programs. The following example show{ ot) { retum 3+4; }
how inappropriate usage can lead to surprises because of a | :
of bracketing of expressions: After translation

The following example illustrates strong typing of both tee 2.6

turn value and arguments of a macro:

Indenting of replacement text

The xcpp preprocessor applies an indentation to an entiekbl

@def int multiply(int x,int y) = x xy of text under macro substitution. The effect is that the ougd
int f() { return multiply(1+2,4); } the preprocessor is often conveniently formatted. For gxam
Before translation @def m(x,y,b) =
{
if (x <)
; : {
int fO) { return 12; } [T
After translation) }
@def loop(i,n,body) =
{
for (int =0 ; i < n ; ++i)
2.5 Rules for delimiting the body -
ody
In the directive@def x = y, we cally thebody. The body is de- } }
limited in a number of different ways. In the following exalap bool f(int * x, int nx, int = y, int ny)
macros named1,w2 andw3 are all equivalent: {]] o
loop(i,nx,loop(j,ny,m(x[il,y[il, true)))
@def wl = 5 return false ;
@def w2 = {5} }
{@def w3 = Before translation
5
} bool f(int * x, int nx, int * y, int ny)
int fO) { return wl+w2+w3; } {
_ - it =0 | ——
Before translation {Or (int 1 b
for (int j=0 ; j < ny ; ++j)
int fO) { return 5+5+5; } it (x[] < yliD
{
After translation return true
}
. . o }
The extent of the body is determined before considering it
macro expansion. The xcpp preprocessor uses the lexiaal scg return false
ner to help determine the extent of the body. This allows ittq !

ignore braces inside // or /*...* comments or in single ouble
quoted strings. From a position just after the '=’, it scaastp
space and tab characters on that line. If the next charaatet a

After translation

linefeed or left brace then it sets the body to be all the ramgi 2 7 Nested macro definitions

characters on that line (not including the linefeed). Oilige

the body is assumed to be an indented block of text delimitéd@cro definitions can be nested. The following example shows
(non-inclusively) by braces. Nested braces are allowedimithow macrom defines docal macro calledy. Local macros are
the block, as long as braces pair up correctly (xcpp couitsdsr not accessible outside the scope of the containing macro.

to determine the end of the block). The body doesn't inclinge t @def m(x) =
final linefeed - i.e. on the last line immediately before thrfi {
right brace. @def y = 2
In rare circumstances when there’s a need to workaround tf| Xty
counting of braces@unstr can be used (this directive is de- int 0
scribed in section 6.3). For example: {
int y=3;
@def leftBrace = @unstr ({) return m(1)+y;
@def rightBrace = @unstr (}) }
@def m = rightBrace @@®@ftBrace @ ®@ftBrace .
const char * f() Before translation
{m}} ;
return ~ @str (m); |{nt f0
} int y=3;
Before translation } retun - 1+2+y;
After translation
const char * f()
3
return "H{" 2.8 Back-quoted arguments to macros
J An argument to a macro can be back-quoted in order to ensure

After translation

it is parsed as a single indivisible argument to bind to the fo
mal argument of the macro. For example, it is necessary to

back-quote the argumemkp<k,v> because it contains commas,
and the macro expander doesn’t count angled brackets taitleli | // Invalid argument to log

de @assertfails (@(log(0)))
terms when a macro is invoked. @assertfails (@(log(-1)))

@def m(type) = void f(const type&);) o .
template <class K, class V> /I Type mismatch (no implicit conversion
m(‘map<K,V>') /I between bool and int)

@assertfails (@(1 == true))

Before translation
/I No implicit conversion from int to bool

@assertfails (- @if (0){})

template <class K,class V>
void f(const map<K,V>&);

After translation 4.3 @fail directive

@fail (x) aborts the xcpp preprocessor displaying an error mes-
o) sage obtained by macro expandinghen evaluating as an ex-
3 Printing to stdio pression that must be implicit convertible to a string.

The directive@print (x) writes the macro expanded formsofo)]]

stdio during the execution of the xcpp macro preprocessus 7o~ @if-@else directive

could for example be used to display warning messages to the o -
programmer@printn is the same a@print except that a line- @if - @else directives can be used for conditional macro expan-

feed is written afterwards. sion. Informally, the syntax is:
Alternatively, text can be written to stdio using t@eunpython @if (b1) {x1}
or @defpython directives (these directives are described in sec| @elseif (b2) {x2}
tion 8): @elseif (b3) {x3}
@runpython @elseif (bn) {xn}
{ @else {y}
print 'Hello, world’
for i in range(4): There may be zero or mor@elseif directives. The@else
print i directive is optional. The,...pbn are macro expanded before
} being evaluated as boolean valued expressions. This for@ra

allows for nesteaif - @else expressions, such as in the following

example:
4 Abortlng the preprocessor @def min(xy) =
{
There are many different error conditions that can causedpp @if(x <y) X} @else {y}

preprocessor to abort with some failure indication. Err@sm

}
sages are displayed in a similar form to the Microsoft VisCrak it f0 { return min(min(3,7)min(L6)): }

compiler. Before translation
The directives in this section are specifically aimed at tibgr

) . After translation
4.1 @assertdirective

The @assert (x) directive macro expandsthen evaluates it as

an expression that must be implicit convertiblentol . If false 6 String conversion directives

then the xcpp preprocessor aborts with an error messageson th

command line. Thewassert (x) directive is stripped from the Sometimes a macro has bound to some text, and we need to put

generated output. i.e. it macro expands into nothing. itin double quotes so it looks like a C/C++ string literal. éther
times it can be useful to remove the quotestr and@strx allow
4.2 @assertfails directive for adding the quotes, ar@unstr allows for removing them.

This directive macro expands into nothing. It verifies thacno 6.1
expansion ok generates a macro expansion error. The error Is
written to stdio. The directive aborts the xcpp preproces#fso The @str (x) directive expands into a double quoted string ob-
macro expansion cfdoesn’t generate an error. The only purposained by first macro expandingthen converting it to a double
of this directive is to properly unit test the xcpp prepreues quoted string. The argument to tl@str directive must always
be enclosed in round brackets. The argument may itself tonta
round brackets as long as they pair up correctly (the pressor

@str directive

/I 'Unit tests of xcpp preprocessor

/I No conversion from string to bool counts bracket tokens from a lexical scan to determine ttenex
@assertfails (@(bool (X"))) of the argument). For example:
/Il No conversion from string to int32 @def min(x,y) =

@assertfails (@(int ("x")))
@if(x <y) {x @else {y}
/I No conversion from multi character
/I string to char const char x f()
@assertfails (@(char ("xx"))) {

\a bell
\b backspace Con@?stfhar v 8=
\f formfeed (
\n linefeed abc
\r carriage return def
\t horizontal tab .
. ghi
v vertical tab);
\xhh | hexadecimal value
\0 null character Before translation
\\ backslash
v single quote const char * s =
\ " double quote “abc\n defin\nghi"
Table 1: Escape characters After translation

return ~ @str (Minimum is min(3,4));

} 6.2 @strx directive
Before translation

The directive@strx is the same agstr except that linefeeds

cause the string to be broken up into separate strings. 3 hise-

{CO”St IR) ful given that the C/C++ compiler concatenates adjaceimigstr
return "Minimum is 3" literals.

} The strings are formatted into a nicely tabbed block of code

ready to be compiled by the C/C++ compiler.

After translation

Non-printable characters, backslashes, single and doub|- {@def min(xy) =
guote characters and so forth are escaped as requiredifay str @if(x <vy) {x} @else {y}
literals in C/C++ (see Table 1). For example: }
const char * f()
@def a = @unstr (\a) {
@def b = @unstr (\b") static const char * § =
@def f = @unstr (\f") @strx
@def n = @unstr (\n’) (
@def r = @unstr (\r') This is a sentence
@def t = @unstr (\t') stating that the
@def v = @unstr (\v') minimum of 3,4 is
@def ff = @unstr (\xff") min(3,4)
@def z = @unstr (\0’));
const char * s = return s;
@str@b fnrtvffz\0 "w"); }
Before translation Before translation
const char » s =
"a \b \f \n \r \t \v \xff \0 \‘hov * WA int ()
. {
After translation static const char x s =
"This is a sentence\n"
If the @str token and the subsequent left bracket token appeg "stating that the\n"
on the same line then all white space characters betweenthe ¢ “minimum of 3,4 is\n"
taining brackets are significant - i.e. are assumed to beoptre) 3
text to be represented as a C/C++ literal. For example:
const char * 5 = @str(1 After translation
2)
Before translation 6.3 @unstr directive
const char * s = " 1\n\n 2 " To processaunstr (x) , x is macro expanded and this is assumed

to produce a valid single or double quoted strin@unstr (x)
macro expands into a version of the string with the quotes re-
Otherwise if the@str token and the subsequent left brackemnoved. Also characters that were escaped are “un-escapef”.

token appear on different lines then the text to be convegedn is replaced by a real linefeed character.

assumed to be an indented block. The position of the first non

whitespace character defines the indent position of thekbloc‘
The block is converted to a string literal without the whipase Before translation
characters to the left of this indent position and withoet lgad-
ing and trailing linefeeds (i.e. that appear just after therong
bracket and just before the closing bracket). Note thalirigpi
white space characters on a given line are significant. Famex After translation
ple:

After translation

@unstr ("/[") This is a C++ style comment! ‘

‘ /I This is a C++ style comment! ‘

7 Scope

int f) { retun 2;}
int g() { return 3;}

7.1 Namespace stack

Consider a procedural execution model of the xcpp prepsaces

After translation

A file is typically translated by processing its text fromrst@ This concept of expanding a macro in ttantext of the caller

finish. Typically text is processed by copying it verbatirorfr (and not the callee) makes it possible to write very flexible

input to output. macros without the need to explicitly parameterise witlgdar
C/C++ comments are copied verbatim without further processimbers of formal arguments.

ing. It follows that@def directives can be commented out easily.

E.g. . .
9 7.3 @nakeddef directive
@def m = 1 . oo
/l@def m = 2 The @nakeddef directive is the same as tl@def directive except
int f) { return m;} that when the macro is invoked no local namespace is pushed
Before translation onto the namespace stack. The effect is that its local, dieste
macro definitions are added to the namespace of the caller. Fo
/i@def m = 2 example:
int fO) { return 1;} @nakeddef m1 =
After translation @def n = 1
Note that the comment appeared in the output. To strip a con }@nakeddef m2 =
ment from the output, precede the C/C++ comment \@tli.e. {
use@.. or@=«.. =/ .Forexample: ; @def n = 2
@ This comment is stripped from the output
@def m = 1 ml
int f) { return n;}
int f() { return m;}
. m2
Before translation int g0 { retun n;}

int f) { return 1;} [

Before translation

After translation

int () {
int g0 {

return 1; }
return 2; }

The xcpp preprocessor uses a stack of namespaces to rec
macro definitions. Macro names are looked up by searching eac
namespace in turn, starting from the top of the stack. Thezef

names in an inner scope hide names in an outer scope. When

After translation

translation first begins at the top of the file, the stack isdhised 7 4 | ocal scope in directives

with a single entry, which is the global namespace for maefe d

initions. Note therefore that macros at the outermost sempe Most directives introduce private namespaces for localrosac
recorded in the global namespace. For example, local macros can be defined in either the boolean

When a@def directive is processed the macro is recorded @@ndition or the body of amif directive, or within a@..)
the namespace at the top of the stack. The body of a macréiigctive:

skipped over without being processed. Therefore, at thig ti
the nested@def directives are ignored. Processing the body of g
macro only occurs when the macro is invoked (if ever).

When a macro is invoked a new namespace is pushed on
the top of the stack in preparation for processing the bodhef
macro. It is popped when the processing of the body is com
pleted. The effect is that the execution of the macro creates
local namespace for nestetief directives.

@def int a =1
@if
(
@def a = true
a
)
{
@def b = 2
int ¢ = 10;

int ()

{ return @(@def c = {3} atb+c); }

7.2 Macros are expanded in the context of the
caller

Before translation

A macro is expanded in the context of the stack of namespacs
defined at the point of invocation, not the point of definitidn

int ¢ = 10;

int 0 {

return 6; }

the following examplemis invoked in a context wheren = 2.
The fact that = 1 at the point of definition oifnis irrelevant.

After translation

@def n = 1

@def m = n . .

@def n = 2 7.5 @scope directive

gdeff% { 3return m; } The @scope{x} directive defines a local scope for macro defini-

int g() E return m; } tions.x is macro expanded as if r@scope directive was defined.
This is useful for limiting the scope of macros, to avoid deci-

Before translation tal invocation outside their intended usage.

@scope
@def m(T) =
{
T min(T x1, T x2)
{
return x1 < x2 ? x1
}
m(int)
m(double)
}
int m(1);

D X2;

Before translation

int min(int x1, int x2)
{
return x1 < x2 ? x1 : x2;
}
double min(double x1, double x2)
{
return x1 < x2 ? x1 : x2;
}
int m(1);

After translation

8 Python directives

The following example assumes the previ@isinpython (x)
example has already been executed in order to define the

getfibnumbers function in the Python interpreter:
@defpython getfib(int x) =
{

This is python!

A python expression that
evaluates to a string

str(getfibnumbers(x))
ionst char * f()
return @str (getfib(6));
}
Before translation
const char * f()
i return "[1, 1, 2, 3, 5]"

After translation

8.3 Practical examples using Python

Python provides very convenient string handling functitmest
can readily be made available as macros. For example:

The directives@runpython and @defpython provide access to a | @defpython int - mStriingLength(s) =
Python interpreter. The intention is for complex macrosdale- len(@str (s))
fined using Python, which represents a well supported ant we }
documented language, allowing the xcpp preprocessor timbe s , o
pler @defpython mGetSubString(s, int i1, int
' {
(@str (s))[i1:i2]
8.1 @runpython directive
The@runpython (x) directive macro expandsthen runs it under @defpython - mGetCharlnString(s, int D =
the python interpreter. The directive itself is strippednfr the (@str ()]
generated output. i.e. it macro expands into nothing. The pu
pose is normally to allow for definitions of functions and ivar @defpython mToUpper(s) =
ables and so forth within the python interpreter, ready fdrse- { el BB
guent use by th@defpython directive. @str (s).upper()
@runpython
{ @defpython mToLower(s) =
This is python! {
))) @str (s).lower()
Fibonacci series: }
the sum of two elements
defines the next @defpython mCapitaliseFirstLetter(s) =
def getfibnumbers(max): {
ab []= 01 @str (s).capitalize()
S =
while b < max:)
s.append(b) @defpython mEatLeadingWhitespace(s) =
ab = batb
return s @str (s).Istrip()
} }
@defpython mEatTrailingWhitespace(s) =
. . {
8.2 @defpython directive @str (s).rstrip()
T }
Informally the @defpython directive is of the form
defpyth tri CentreJustify(s, int
‘ Gdetpython macroname(aL.an) = y [{@ efpython string mCentreJustify(s in
]] o]]] @str (s).center(width)
It defines a macro (in a similar fashion to tiaelef directive). }
The substitution string is macro expanded then executed as , _ _ ~
python expression that must evaluate tanan float Or string {@defpython ST D
The @defpython directive itself is stripped from the generated @str (s).ljust(width)
output. i.e. it macro expands into nothing. }

i2) =

width) =

@defpython mRightJustify(s, int width) =
@str (s).rjust(width)
}
const char * f()
{
return
@str (mCentreJustify(mToUpper(hello),11));
}

Before translation

9.3 @[] directive

The @[x] directive is like the inverse of th@quote directive. It
outputs the result of macro expanding the result of macramotp
ing x (i.e. macro expansions are applied twice). It follows that
@[@quote(y)] is equivalent tg.

In the example below, the expressio@@has managed to de-
feat the macro expander (i.e. preventing invocation1gf but
the @[] directive is able to force the macro substitution to take
place anyway.

@def vl = 3
const char * f() const char * f()
{ return HELLO) return @str (v @@ = @v@@);
}
After translation Before translation
const char * f()
. . . i ;
9 Epablmg and disabling macro expan o vl 3
sion }

The three directives in this section can be used to prevdotoe
macro expansion.

After translation

Another example:

9.1 @@ directive {@def min(y) =
The @alirective is stripped away from the output. It acts as 4 @i (x <y &
. . L @else {v}
delimiter for the lexical scanner. For example putt@g@n the }
middle of an identifier causes the lexical scanner to seetitas @def x1 = 10
distinct tokens. @def x2 = 20
int ()
@def x = 1 {
@def y = 2 return @[x@@in(1,2)];
@def xy = 3 }
int f() .
{ Before translation
return x@@
}
. it f
Before translation '{n 0
return 10;
int f) }
L return 12: After translation
}

After translation

10 Expressions

9.2 @aquote directive

The @quote(x) directive macro expands literally to(i.e. with-

The xcpp preprocessor allows for evaluation of expressioms
similar manner to the C/C++ compiler. The operators and thei

out macro expanding). This is useful when we want to disablgorecedence are shown in Table 2. Expressions are evaluated i

macro expansion within some scope.

@def min(x,y) =

@if(x <y) {xXt @else {y}
}
const char * f()
{

return ~ @str (@quote(Min(3,4)) = min(3,4));
}

Before translation

const char * f()
{

return "min(3,4) = 3"
}

After translation

the following circumstances:

e Assignment to a variable in th@let directive;

e Initialising a typed formal argument when invoking a
macro;

e Calculating the return value when invoking a macro that has
a typed return value;

e The@() directive (see below); and

e Evaluation of the boolean expressiondit directives.

The supported types abeol , int , double , char andstring

Unlike C/C++ there is no implicit conversion from to bool .

! Logical negation
- Bitwise negation

Unary minus

+ Unary plus

- Power

* Multiplication

/ Division

% Modulus

+ Addition
Subtraction

<< Bitwise shift left

>> Bitwise shift right

< Comparison less-than

<= Comparison less-than-or-equal-tg

> Comparison greater-than

>= | Comparison greater-than-or-equal-
== Comparison equal-to
=! Comparison not-equal-to
& Bitwise AND
) Bitwise XOR
| Bitwise OR
&& Logical AND
Il Logical OR
? Ternary conditional (if-then-else)

Table 2: Operators

10.1 @() directive

The@(x) directive forces compile time evaluation of expressions
Note thatx is macro expanded before being evaluated as an €3 ypedef double v:

pression.

to

int A[] =

{
@(2x2+2x2), @(274), @1 << 4),
@(Oxabcd & Oxf), @(3 | 5), @(27 % 4),
@(x' ==y), @('x <y +7),
@(1<2 && 2<4), @('(1+1 < 2) ? 10 : 20)

Before translation

int A[] =

16, 16, 16,
13, 7, 3,
false , true ,
true , 10,

After translation

10.2 Special functions

The trigonometric functionsin , cos andtan are available. Also

the exponentiaéxp , and natural logarithreg (basee).

@def double e = exp(1)
double f() { return e; }
Before translation
double f() { return 2.7182818284590451; }

After translation

11 @import directives

The xcpp preprocessor copies C/C++ preprocessor commands
such astpragma , #include and#define verbatim from input to
output. In all other respects it ignores these directives feusts
their processing to the standard C/C++ compiler).

To make the xcpp preprocessor process and access the direc
tives from another file, @import directive must be used. This
is essentially the same as C/C#irclude , and takes the path to
a file to be included at that location in double quotes. In &act
import directive is translated to a correspondinglude direc-
tive by the xcpp preprocessor in preparation for a stand&td-€
compiler. For example:

#include "blah.h"
@import "mydir/myfile.h"
int f) { retun 1;}

Before translation

"blah.h"
"mydir/myfile.h"
return 1; }

#include
#include

int 0 {

After translation

There is a crucial conceptual distinction betweesinaude
and a@import . A #include indicates that the contents of the file
are to be inserted at that location and procesedHbat context.
In C/C++ the processing of the file could be influenced by earli

#define directives. For example, consider a header file:
#ifdef X
typedef int Y;
#else

#endif

The processing of this file is influenced by whethedgine
x directive appears before it. Some programmers exploitciis
pability — by including the same file from different placeaus-
ing it to generate variable output.

This practice is rejected in the xcpp preprocessor because
its macro expansion capabilities are easily powerful ehaiag
eliminate the need for such techniques, and assuming evVery fi
has a consistent translation allows the preprocesscadte the
namespace of macro definitions obtained by processing e fil
This allows for significant performance gains in the xcppppoe
cessor for large projects.

The word import is intended to indicate that the directive
causes the importing of one namespace into another. The im-
plementation is able to cache namespaces in memory and an im-
port directive avoids the need to physically copy entriesnfr
one namespace data structure into another. The effecttialtha
header files behave like pre-compiled headers.

12 Macro variables

12.1 Macro reassignment

A macro can be redefined (or “reassigned”) making it like &var
able that changes value during the execution of the xcpp pre-
processor. No warnings are emitted by xcpp when a macro is
redefined:

@def m = "hello world"

const char = f() { return m; }
@def m = 200

int g) { retun m;}

Before translation

const char * f() { return "hello world" ;)
int g() { return 200; }

[‘ const char = f() { return “hello world!" v}

After translation

After translation

There is a special syntax to assign a string variable to macro

Even thoughadef can be used to redefine a macro, makingdipanded text. The directi@let x := y is equivalent ta@let
like a variable available during the execution of the xcppces- « = @str (y) .

sor, it is not generally suitable for this purpose becauserthcro

is always local to the scope in which tl@alef directive appears.
In the following example, there is no redefinition mfbecause

12.3 @while directive

the body of theaif directive creates bocal scope for macro def- The @while directive allows for simple loops. For example:

initions:
/I Calculate 1 + 2 + ... + n
@def m = 1 @def int mSumfnt n) =
@if (m > 0) {
@let int sum = 0
@def m = m+1 @let int i =1
@while (i <= n)
int f) { vretun m;} {
@let sum = sum + i
Before translation @let i =i+ 1
}
sum
int f() { return 1;} }

After translation

In any case there would be problems with infinite recursion| @def string mGenerateSum(int n) =
The following crashes the xcpp preprocessor with a stack-ove| {
flow because the redefinition efis imposedbefore processing

@assert (mSum(4) == 10)

/I Generate "1+2+...+n"

@let string sum = 1

. L. . . let int =2
its body (this is intentional because recursion can be veejul gwh”e (i <= n)
— see section 14): {
@let sum := sum+i

/I Oops : crashes the xcpp preprocessor! @let i =i+ 1

@def int m =1 }

@def int m = m+1 @str (sum)

int f() { return m;}

@assert (@str (mGenerateSum(4)) == "1+2+3+4")

12.2 @let directive

To allow macros to be used like variables thet directive can 13 @fOI’ directive

be used. This directive has two syntactic forms. When theig/pe . . .
specified, it introduces a name in that scope. Otherwiséndtsb The @for directive allows for simple loops. The body of the di-

to an existing name by searching upwards through nesteescd

for a previously defined variable with that name.

sctive is repeately macro expanded for different valuethef
loop variable(s), taken in sequence from tteeation list which
is a comma separate list of values enclosed in square bsacket

@let int m =0

@let m = m+1

int f) { return m;}

@if (m > 0) @let m = m+1
int g) { return m;}

A tuple of loop variables is supported, by using a comma sepa-
rated list of identifiers in round brackets, and correspogdiiple
values in the iteration list.

The loop variables can be regarded as macros that have local

Before translation

scope over the body of th@for directive.

@for (i in [1,2,3])

int f() { return 1;}
int g) { return 2;}

f(i);

After translation

12.2.1 String variables

String literals can be given in single or double quotes (disl t g(i.);
has no effect on the meaning). The binary '+' operator can bq }
used to concatenate strings. However, string variablesanac Before translation
expand without the containing quotes! This leads to some sur

prises. To get the quotes tl@tr directive must be used.

}
{@for (@M in [(2).(2).C3)D)
f(0);
}
@for ((i.)) in [(1,7),(2,-1),(3.4))
{

f(1);f(2);(3);

@let string m = “hello" + "

@let m = @str (m) + 'world’

@let m = m !

const char » f() { return @str(m); }

f(1):f(2):1(3);
9(1,7);9(2,-1);9(3,4);

After translation

Before translation

The iteration list is initially parsed as a single block oktte
enclosed in square brackets. This text is then macro expande

according to the macros defined at the point of invocatioref t
@for directive. Only then is the result parsed as a comma sepq - {
rated list. This approach makes the following example [obssi return 5 4% 3% 2 1;

const char * s =
@strx
(
@def makelist(int n) =
{
@if (n>1) {makelist(n-1),n}
@else {1}
}
@for (i in [makelist(4)])
{
@for (] in [makelist(i)])
{
i+] = @it
}
}

Before translation

const char » s =
"1+ 1=2n"
"2 +1=23n"
"2 + 2 = 4\n"
"3 + 1 =4n"
"3 + 2 =5n"
"3 + 3 = 6\n"
"4 + 1 = 5\n"
"4 + 2 = 6\n"
"4 + 3 =T7n"
"4 + 4 = 8\n"

After translation

14 Recursive macros

Macros may call themselves recursively (as long as theyiterm
nate). The following example shows how we can use a macrq to
calculate factorial at compile time. This example makesafse
strong typing on both the argument and return type.

@def int factorial(int n) =
{

@if (n <= 1) {1}

@else {n factorial(n-1)}
}
int ()
{

return factorial(5);
}

Before translation

int ()
{

return 120;
}

After translation

Now consider that the return type on the factorial macratisn’

specified:

@def factorial(int n) =

@if (n <= 1) {1}
@else {n *factorial(n-1)}

return factorial(5);

Before translation

int f()

}

After translation

If we don't strongly type the argument then we end up with an
erroneous definition because of lack of bracketing:

@def factorial(n) =
{

@if (n <= 1) {1}

@else {n = factorial(n-1)}
}
int ()
{

/I oops!

return factorial(5);
}

Before translation

int ()
{

/I oops!

return 5% 5-1 #5-1-1 *5-1-1-1 =1,
}

After translation

15 Example usage of the macro ex-
pander

As a practical example, the macro expander has been fougd ver
useful for generating test code. Some of the unit test files ex
pand into over 100 000 lines of C++ code in order to fully flex
important parts of the ceda core.

Here is a concocted example of the macro expander at work
0 give some idea of what’s available for automated codergene
tion.

void UnitTests()
{
@for ((type,val) in [(int ,10), (char,
'c’), (double , 2.71828)])
{
std::cout << @str (Testing with type
val) << std::endl;
type x @®pe = val;
RunUnitTest(x ~@@pe);
}
}

Before translation

void UnitTests()

std::cout << "Testing with int 10" <<
std::endl;

int xint = 10;

RunUnitTest(xint);

std::cout << "Testing with char \'c\™ <<
std::endl;

char xchar = 'c’;

RunUnitTest(xchar);

std::cout << "Testing with double 2.71828"
<< std:endl;

double xdouble = 2.71828;

RunUnitTest(xdouble);

After translation

10

A Xcpp preprocessor grammar

We use [1] to define the EBNF syntax.

A.1 Lexical scanner

Let printableChar

done as normal for C/C++).

denote a printable ASCII character. The fol-
lowing describes the lexical scanner (with the caveat thatew
space and comment processing hasn’t been described — this|

letter =
A [¢ | D | B | 'F |G |
HO| T Y K L M N
o P Q| RS T U
VW X Y |z
a | b e jd e | f] g |
N T T T 7O T T B MO
o S e T TS T T
vVolw x|y |7
digit =
I L T S T R BV O
5| e | 7T | 8 | 9
identifier =
(' | letter), { | letter | digit};
boolLiteral = ‘false’ | ‘true’
digSeq = digit, {digit};
integerLiteral = digSeq;
exp = ('E' |), ['+ |] digSeq;
floatLiteral =
digSeq, exp |
(digSeq, ' | [digSeq], ', digSeq), [exp];
hexDigit = digit |
AN | B | C | D | E | P |
a | b | ¢ | d | e |
hexLiteral = '0x” , hexDigit, {hexDigit};
escapeChar =
B T T R T B
A I C U Y I A
stringChar =
printableChar - escapeChar |
\' , escapeChar;
stringLiteral =
, {stringChar}, "
", {stringChar}, "";

Grammar for lexical scanner

A.2 Expressions

The xcpp preprocessor must evaluate expressions undeusari
circumstances. For example, in coercions for typed argtsnen

varRef = unaryExpr;

conditionalExpr =
logicalOrExpr, { '
logicalOrExpr };

, expression, T

logicalOrExpr =
logicalAndExpr, { I, logicalAndExpr };
logicalAndExpr =
bitwiseOrExpr, { '&&' , bitwiseOrExpr };
bitwiseOrExpr =
bitwiseXorExpr, { I, bitwiseXorExpr };
bitwiseXorExpr =
bitwiseAndExpr, { ™, bitwiseAndExpr };
bitwiseAndExpr =
equalityExpr, { ‘&', equalityExpr };
equalityExpr =
relationalExpr, { (= | =)
relationalExpr };

relationalExpr =

shiftExpr, { (<] <= > >=),
shiftExpr };
shiftExpr =
additiveExpr, { (>>! '<<’), additiveExpr

additiveExpr =

multExpr, { ('+ |), multExpr };
multExpr =

powExpr, { (x| ' | %), powExpr };
powEXxpr =

unaryExpr, { , unaryExpr };
unaryExpr =

{+ |~ | 7 | " } postfixExpr;
unaryFnName =

‘len’ |

‘bool’ | int | ’'double’ |

‘char’ | ’string’ |

'is_bool’ | is_int’ | ’is_double’ |

'is_char’ | is_string’ |

'sin’ | 'cos’ | ‘tan’ | 'exp’” | 'log’ ;

postfixExpr =

primaryExpr, { T, expression, T %
literal =

boolLiteral |

integerLiteral |

hexLiteral |

floatLiteral |

stringLiteral;

primaryExpr =
identifier - unaryFnName |

unaryFnName, (" , expression, D
literal |
(", expression, D

to macros, typed return values from macros, in@tgdirective,

and the boolean expressions use@in@else directives.

expression = assignmentExpr

assignmentOp =
= &= | |
88=" | 1= | = |
=’ | = | B | /=4 |

B
%= -

assignmentExpr =
{varRef, assignmentOp}, conditionalExpr;

Grammar for expressions

A.3 Grammar of @def directive
type =
'bool’ | it | ’'double’ |
‘char’ | ’string’ ;

11

argType = type;
argName = identifier;

arg = [argType], argName;

returnType = type;
macroName = identifier;

defDirective =
‘@def’ , [returnType], macroName,

e o {4 Lag)Y H))

value;

Grammar for @def directive

More informally we could define the syntax as follows:
@def [return-type] x [([type] al,...[type] an)] =y

This defines a macro named The directive itself expands
into nothing in the outputx must be a C/C++ style identifier.
The macro named is added to the local namespace. This may
replace an existing definition afin the local namespace. There
is no support for overloading of macros - even on arity. The
body of a macro introduces a new scope (i.e. namespace). This
namespace contains the names of the formal arguments of that
macro.

The return type is optional. If given it must eol , int |,
double , char Orstring . If no return type is provided then when
x is invoked,x macro expands into the result of macro expand-
ing y. Otherwise, if a return type is provided then after macro
expandingy, it is evaluated as an expression that must be im-
plicit convertible to the return type. The invocationofs then
substituted by the string representation of the evaluasadlt.

The argument list is optional. Each formal argument must be
an identifier. Formal argument names cannot be repeated:-A fo
mal argument can optionally be preceded by a type which must
bebool , char ,int , double oOrstring . When a formal argument
is not typed, the formal argument binds directly to the textp
vided in the invocation of the macro. Otherwise, when a fdrma
argument is typed, the text provided for the formal argunient
the invocation of the macro is first macro expanded then evalu
ated as an expression that must be implicit convertiblegdytpe
of the formal argument. The formal argument binds to thegtri
representation of the evaluated result.

References

[1] ISO/IEC 14977:1996(E).Information technology - Syn-
tactic metalanguage - Extended BNF, First edition
1996-12-15. http://standards.iso.org/ittf/
PubliclyAvailableStandards/s026153_ISO_IEC_
14977_1996(E).zip

12

