
Xcpp Macro Preprocessor

David Barrett-Lennard
Cedanet Pty Ltd

Perth, Western Australia
david.barrettlennard@cedanet.com.au

March 24, 2010

Abstract

Xcpp includes a powerful macro preprocessor. This paper de-
scribes the preprocessor directives with example usage.

1 Overview

The xcpp macro preprocessor is applied to the source code be-
fore subsequent compilation by a standard C/C++ compiler. The
directives always begin with the@character. In the code exam-
ples presented in this paper red syntax colouring is used forthese
directives and blue for the standard C++ keywords.

To illustrate the preprocessor self contained code examples are
shown before and after translation. The appendices define the
grammar using EBNF.

2 @def directive

2.1 Simple macros

A macro can be defined and then referenced any number of times
further down in the translation unit:

@def m = 100

// This is a comment
int f() { return m+m/2; }

Before translation

// This is a comment
int f() { return 100+100/2; }

After translation

We say that macromhas beeninvoked twice in the above exam-
ple. Often a macro is defined in a header file so it can be invoked
from multiple source files. We refer to the substitution string100

as thebody of m.
The translation maintains existing indentation and comments.

Macro definitions are stripped away, and all invocations of a
macro after the point of definition result in substitution bythe
body.

2.2 Macro arguments

In similar fashion to C/C++#define macro definitions, xcpp
macros can take any number of formal arguments. By default
the macro expander performs substitution without regard for the
semantics of C/C++ programs. The following example shows
how inappropriate usage can lead to surprises because of a lack
of bracketing of expressions:

@def add(x,y) = x+y
int f() { return 3* add(5,2); }

Before translation

int f() { return 3* 5+2; }

After translation

2.3 Macro return types

The return type of a macro can be specified. In the following
example it is stipulated thatadd(x,y) returns anint . This causes
xcpp to perform calculations at compile time in order to coerce
the return value.

@def int add(x,y) = x+y
int f() { return 3* add(5,2); }

Before translation

int f() { return 3* 7; }

After translation

This can have a number of advantages:

• It can avoid the problems with macro expanded expressions
needing additional brackets in order to be processed cor-
rectly;

• It helps to self document the intent;

• The xcpp compiler validates the type, and provides useful
error messages when type checking fails; and

• The generated code is more succinct.

2.4 Macro argument types

The types of the formal arguments of a macro can optionally be
specified. This leads to eager evaluation of the arguments by
the xcpp preprocessor at the point of invocation. The advan-
tages described above for strong typed return values also apply
to strongly typed formal arguments. Here is an example:

@def multiply(int x, int y) = x * y
int f() { return multiply(1+2,4); }

Before translation

int f() { return 3* 4; }

After translation

1

The following example illustrates strong typing of both there-
turn value and arguments of a macro:

@def int multiply(int x, int y) = x * y
int f() { return multiply(1+2,4); }

Before translation

int f() { return 12; }

After translation

2.5 Rules for delimiting the body

In the directive@def x = y , we cally thebody. The body is de-
limited in a number of different ways. In the following example,
macros namedw1,w2 andw3 are all equivalent:

@def w1 = 5
@def w2 = {5}
@def w3 =
{

5
}
int f() { return w1+w2+w3; }

Before translation

int f() { return 5+5+5; }

After translation

The extent of the body is determined before considering its
macro expansion. The xcpp preprocessor uses the lexical scan-
ner to help determine the extent of the body. This allows it to
ignore braces inside // or /*...*/ comments or in single or double
quoted strings. From a position just after the ’=’, it scans past
space and tab characters on that line. If the next character is not a
linefeed or left brace then it sets the body to be all the remaining
characters on that line (not including the linefeed). Otherwise
the body is assumed to be an indented block of text delimited
(non-inclusively) by braces. Nested braces are allowed within
the block, as long as braces pair up correctly (xcpp counts braces
to determine the end of the block). The body doesn’t include the
final linefeed - i.e. on the last line immediately before the final
right brace.

In rare circumstances when there’s a need to workaround the
counting of braces,@unstr can be used (this directive is de-
scribed in section 6.3). For example:

@def leftBrace = @unstr (’{’)
@def rightBrace = @unstr (’}’)
@def m = rightBrace @@leftBrace @@leftBrace
const char * f()
{

{m}}
return @str (m);

}

Before translation

const char * f()
{

{}{{}}
return "}{{" ;

}

After translation

2.6 Indenting of replacement text

The xcpp preprocessor applies an indentation to an entire block
of text under macro substitution. The effect is that the output of
the preprocessor is often conveniently formatted. For example:

@def m(x,y,b) =
{

if (x < y)
{

return b;
}

}
@def loop(i,n,body) =
{

for (int i=0 ; i < n ; ++i)
{

body
}

}
bool f(int * x, int nx, int * y, int ny)
{

loop(i,nx,loop(j,ny,m(x[i],y[j], true)))
return false ;

}

Before translation

bool f(int * x, int nx, int * y, int ny)
{

for (int i=0 ; i < nx ; ++i)
{

for (int j=0 ; j < ny ; ++j)
{

if (x[i] < y[j])
{

return true ;
}

}
}
return false ;

}

After translation

2.7 Nested macro definitions

Macro definitions can be nested. The following example shows
how macrom defines alocal macro calledy. Local macros are
not accessible outside the scope of the containing macro.

@def m(x) =
{

@def y = 2
x+y

}
int f()
{

int y = 3;
return m(1)+y;

}

Before translation

int f()
{

int y = 3;
return 1+2+y;

}

After translation

2.8 Back-quoted arguments to macros

An argument to a macro can be back-quoted in order to ensure
it is parsed as a single indivisible argument to bind to the for-
mal argument of the macro. For example, it is necessary to

2

back-quote the argumentmap<K,V> because it contains commas,
and the macro expander doesn’t count angled brackets to delimit
terms when a macro is invoked.

@def m(type) = void f(const type&);
template <class K, class V>
m(‘map<K,V>‘)

Before translation

template <class K, class V>
void f(const map<K,V>&);

After translation

3 Printing to stdio

The directive@print (x) writes the macro expanded form ofx to
stdio during the execution of the xcpp macro preprocessor. This
could for example be used to display warning messages to the
programmer.@println is the same as@print except that a line-
feed is written afterwards.

Alternatively, text can be written to stdio using the@runpython

or @defpython directives (these directives are described in sec-
tion 8):

@runpython
{

print ’Hello, world’
for i in range(4):

print i
}

4 Aborting the preprocessor

There are many different error conditions that can cause thexcpp
preprocessor to abort with some failure indication. Error mes-
sages are displayed in a similar form to the Microsoft VisualC++
compiler.

The directives in this section are specifically aimed at aborting
the xcpp preprocessor.

4.1 @assert directive

The @assert (x) directive macro expandsx then evaluates it as
an expression that must be implicit convertible tobool . If false
then the xcpp preprocessor aborts with an error message on the
command line. The@assert (x) directive is stripped from the
generated output. i.e. it macro expands into nothing.

4.2 @assertfails directive

This directive macro expands into nothing. It verifies that macro
expansion ofx generates a macro expansion error. The error is
written to stdio. The directive aborts the xcpp preprocessor if
macro expansion ofx doesn’t generate an error. The only purpose
of this directive is to properly unit test the xcpp preprocessor.

// Unit tests of xcpp preprocessor

// No conversion from string to bool
@assertfails (@(bool ("x")))

// No conversion from string to int32
@assertfails (@(int ("x")))

// No conversion from multi character
// string to char
@assertfails (@(char ("xx")))

// Invalid argument to log
@assertfails (@(log(0)))
@assertfails (@(log(-1)))

// Type mismatch (no implicit conversion
// between bool and int)
@assertfails (@(1 == true))

// No implicit conversion from int to bool
@assertfails (@if (0){})

4.3 @fail directive

@fail (x) aborts the xcpp preprocessor displaying an error mes-
sage obtained by macro expandingx then evaluating as an ex-
pression that must be implicit convertible to a string.

5 @if-@else directive

@if - @else directives can be used for conditional macro expan-
sion. Informally, the syntax is:

@if (b1) {x1}
@elseif (b2) {x2}
@elseif (b3) {x3}
...
@elseif (bn) {xn}
@else {y}

There may be zero or more@elseif directives. The@else

directive is optional. Theb1,...,bn are macro expanded before
being evaluated as boolean valued expressions. This for example
allows for nested@if - @else expressions, such as in the following
example:

@def min(x,y) =
{

@if (x < y) {x} @else {y}
}
int f() { return min(min(3,7),min(1,6)); }

Before translation

int f() { return 1; }

After translation

6 String conversion directives

Sometimes a macro has bound to some text, and we need to put
it in double quotes so it looks like a C/C++ string literal. Atother
times it can be useful to remove the quotes.@str and@strx allow
for adding the quotes, and@unstr allows for removing them.

6.1 @str directive

The @str (x) directive expands into a double quoted string ob-
tained by first macro expandingx then converting it to a double
quoted string. The argument to the@str directive must always
be enclosed in round brackets. The argument may itself contain
round brackets as long as they pair up correctly (the preprocessor
counts bracket tokens from a lexical scan to determine the extent
of the argument). For example:

@def min(x,y) =
{

@if (x < y) {x} @else {y}
}
const char * f()
{

3

\a bell
\b backspace
\f formfeed
\n linefeed
\r carriage return
\t horizontal tab
\v vertical tab

\xhh hexadecimal value
\0 null character
\\ backslash
\’ single quote
\ " double quote

Table 1: Escape characters

return @str (Minimum is min(3,4));
}

Before translation

const char * f()
{

return "Minimum is 3" ;
}

After translation

Non-printable characters, backslashes, single and double
quote characters and so forth are escaped as required for string
literals in C/C++ (see Table 1). For example:

@def a = @unstr (’\a’)
@def b = @unstr (’\b’)
@def f = @unstr (’\f’)
@def n = @unstr (’\n’)
@def r = @unstr (’\r’)
@def t = @unstr (’\t’)
@def v = @unstr (’\v’)
@def ff = @unstr (’\xff’)
@def z = @unstr (’\0’)
const char * s =

@str (a b f n r t v ff z ’\0’ "w");

Before translation

const char * s =
"\a \b \f \n \r \t \v \xff \0 \’\\0\’ \" w\ "" ;

After translation

If the @str token and the subsequent left bracket token appear
on the same line then all white space characters between the con-
taining brackets are significant - i.e. are assumed to be partof the
text to be represented as a C/C++ literal. For example:

const char * s = @str (1

2);

Before translation

const char * s = " 1\n\n 2 " ;

After translation

Otherwise if the@str token and the subsequent left bracket
token appear on different lines then the text to be convertedis
assumed to be an indented block. The position of the first non-
whitespace character defines the indent position of the block.
The block is converted to a string literal without the white space
characters to the left of this indent position and without the lead-
ing and trailing linefeeds (i.e. that appear just after the opening
bracket and just before the closing bracket). Note that trailing
white space characters on a given line are significant. For exam-
ple:

const char * s =
@str
(

abc
def

ghi
);

Before translation

const char * s =
"abc\n def\n\nghi" ;

After translation

6.2 @strx directive

The directive@strx is the same as@str except that linefeeds
cause the string to be broken up into separate strings. This is use-
ful given that the C/C++ compiler concatenates adjacent string
literals.

The strings are formatted into a nicely tabbed block of code
ready to be compiled by the C/C++ compiler.

@def min(x,y) =
{

@if (x < y) {x} @else {y}
}
const char * f()
{

static const char * s =
@strx
(

This is a sentence
stating that the
minimum of 3,4 is
min(3,4)

);
return s;

}

Before translation

int f()
{

static const char * s =
"This is a sentence\n"
"stating that the\n"
"minimum of 3,4 is\n"
"3" ;

}

After translation

6.3 @unstr directive

To process@unstr (x) , x is macro expanded and this is assumed
to produce a valid single or double quoted string.@unstr (x)

macro expands into a version of the string with the quotes re-
moved. Also characters that were escaped are “un-escaped”.E.g.
\n is replaced by a real linefeed character.

@unstr ("//") This is a C++ style comment!

Before translation

// This is a C++ style comment!

After translation

4

7 Scope

7.1 Namespace stack

Consider a procedural execution model of the xcpp preprocessor.
A file is typically translated by processing its text from start to
finish. Typically text is processed by copying it verbatim from
input to output.

C/C++ comments are copied verbatim without further process-
ing. It follows that@def directives can be commented out easily.
E.g.

@def m = 1
//@def m = 2
int f() { return m; }

Before translation

//@def m = 2
int f() { return 1; }

After translation

Note that the comment appeared in the output. To strip a com-
ment from the output, precede the C/C++ comment with@. i.e.
use@//... or @/ * ... * / . For example:

@// This comment is stripped from the output
@def m = 1

int f() { return m; }

Before translation

int f() { return 1; }

After translation

The xcpp preprocessor uses a stack of namespaces to record
macro definitions. Macro names are looked up by searching each
namespace in turn, starting from the top of the stack. Therefore
names in an inner scope hide names in an outer scope. When
translation first begins at the top of the file, the stack is initialised
with a single entry, which is the global namespace for macro def-
initions. Note therefore that macros at the outermost scopeare
recorded in the global namespace.

When a@def directive is processed the macro is recorded in
the namespace at the top of the stack. The body of a macro is
skipped over without being processed. Therefore, at this time
the nested@def directives are ignored. Processing the body of a
macro only occurs when the macro is invoked (if ever).

When a macro is invoked a new namespace is pushed onto
the top of the stack in preparation for processing the body ofthe
macro. It is popped when the processing of the body is com-
pleted. The effect is that the execution of the macro createsa
local namespace for nested@def directives.

7.2 Macros are expanded in the context of the
caller

A macro is expanded in the context of the stack of namespaces
defined at the point of invocation, not the point of definition. In
the following example,m is invoked in a context wheren = 2.
The fact thatn = 1 at the point of definition ofmis irrelevant.

@def n = 1
@def m = n
@def n = 2
int f() { return m; }
@def n = 3
int g() { return m; }

Before translation

int f() { return 2; }
int g() { return 3; }

After translation

This concept of expanding a macro in thecontext of the caller
(and not the callee) makes it possible to write very flexible
macros without the need to explicitly parameterise with large
numbers of formal arguments.

7.3 @nakeddef directive

The@nakeddef directive is the same as the@def directive except
that when the macro is invoked no local namespace is pushed
onto the namespace stack. The effect is that its local, nested
macro definitions are added to the namespace of the caller. For
example:

@nakeddef m1 =
{

@def n = 1
}
@nakeddef m2 =
{

@def n = 2
}

m1
int f() { return n; }

m2
int g() { return n; }

Before translation

int f() { return 1; }
int g() { return 2; }

After translation

7.4 Local scope in directives

Most directives introduce private namespaces for local macros.
For example, local macros can be defined in either the boolean
condition or the body of an@if directive, or within a@(...)

directive:

@def int a = 1
@if
(

@def a = true
a

)
{

@def b = 2
int c = 10;
int f() { return @(@def c = {3} a+b+c); }

}

Before translation

int c = 10;
int f() { return 6; }

After translation

7.5 @scope directive

The @scope{x} directive defines a local scope for macro defini-
tions.x is macro expanded as if no@scope directive was defined.
This is useful for limiting the scope of macros, to avoid acciden-
tal invocation outside their intended usage.

5

@scope
{

@def m(T) =
{

T min(T x1, T x2)
{

return x1 < x2 ? x1 : x2;
}

}
m(int)
m(double)

}
int m(1);

Before translation

int min(int x1, int x2)
{

return x1 < x2 ? x1 : x2;
}
double min(double x1, double x2)
{

return x1 < x2 ? x1 : x2;
}
int m(1);

After translation

8 Python directives

The directives@runpython and@defpython provide access to a
Python interpreter. The intention is for complex macros to be de-
fined using Python, which represents a well supported and well
documented language, allowing the xcpp preprocessor to be sim-
pler.

8.1 @runpython directive

The@runpython (x) directive macro expandsx then runs it under
the python interpreter. The directive itself is stripped from the
generated output. i.e. it macro expands into nothing. The pur-
pose is normally to allow for definitions of functions and vari-
ables and so forth within the python interpreter, ready for subse-
quent use by the@defpython directive.

@runpython
{

This is python!

Fibonacci series:
the sum of two elements
defines the next
def getfibnumbers(max):

a,b = 0,1
s = []
while b < max:

s.append(b)
a,b = b,a+b

return s
}

8.2 @defpython directive

Informally the@defpython directive is of the form

@defpython macroname(a1,...,an) = y

It defines a macro (in a similar fashion to the@def directive).
The substitution string is macro expanded then executed as a
python expression that must evaluate to anint , float or string .
The @defpython directive itself is stripped from the generated
output. i.e. it macro expands into nothing.

The following example assumes the previous@runpython (x)

example has already been executed in order to define the
getfibnumbers function in the Python interpreter:

@defpython getfib(int x) =
{

This is python!

A python expression that
evaluates to a string
str(getfibnumbers(x))

}
const char * f()
{

return @str (getfib(6));
}

Before translation

const char * f()
{

return "[1, 1, 2, 3, 5]" ;
}

After translation

8.3 Practical examples using Python

Python provides very convenient string handling functionsthat
can readily be made available as macros. For example:

@defpython int mStringLength(s) =
{

len(@str (s))
}

@defpython mGetSubString(s, int i1, int i2) =
{

(@str (s))[i1:i2]
}

@defpython mGetCharInString(s, int i) =
{

(@str (s))[i]
}

@defpython mToUpper(s) =
{

@str (s).upper()
}

@defpython mToLower(s) =
{

@str (s).lower()
}

@defpython mCapitaliseFirstLetter(s) =
{

@str (s).capitalize()
}

@defpython mEatLeadingWhitespace(s) =
{

@str (s).lstrip()
}

@defpython mEatTrailingWhitespace(s) =
{

@str (s).rstrip()
}

@defpython string mCentreJustify(s, int width) =
{

@str (s).center(width)
}

@defpython mLeftJustify(s, int width) =
{

@str (s).ljust(width)
}

6

@defpython mRightJustify(s, int width) =
{

@str (s).rjust(width)
}

const char * f()
{

return
@str (mCentreJustify(mToUpper(hello),11));

}

Before translation

const char * f()
{

return " HELLO " ;
}

After translation

9 Enabling and disabling macro expan-
sion

The three directives in this section can be used to prevent orforce
macro expansion.

9.1 @@ directive

The @@directive is stripped away from the output. It acts as a
delimiter for the lexical scanner. For example putting@@in the
middle of an identifier causes the lexical scanner to see it astwo
distinct tokens.

@def x = 1
@def y = 2
@def xy = 3
int f()
{

return x@@y;
}

Before translation

int f()
{

return 12;
}

After translation

9.2 @quote directive

The@quote(x) directive macro expands literally tox (i.e. with-
out macro expandingx). This is useful when we want to disable
macro expansion within some scope.

@def min(x,y) =
{

@if (x < y) {x} @else {y}
}
const char * f()
{

return @str (@quote(min(3,4)) = min(3,4));
}

Before translation

const char * f()
{

return "min(3,4) = 3" ;
}

After translation

9.3 @[] directive

The @[x] directive is like the inverse of the@quote directive. It
outputs the result of macro expanding the result of macro expand-
ing x (i.e. macro expansions are applied twice). It follows that
@[@quote(y)] is equivalent toy.

In the example below, the expressionv@@1 has managed to de-
feat the macro expander (i.e. preventing invocation ofv1), but
the @[] directive is able to force the macro substitution to take
place anyway.

@def v1 = 3
const char * f()
{

return @str (v @@1 = @[v@@1]);
}

Before translation

const char * f()
{

return "v1 = 3" ;
}

After translation

Another example:

@def min(x,y) =
{

@if (x < y) {x}
@else {y}

}
@def x1 = 10
@def x2 = 20
int f()
{

return @[x@@min(1,2)];
}

Before translation

int f()
{

return 10;
}

After translation

10 Expressions

The xcpp preprocessor allows for evaluation of expressionsin a
similar manner to the C/C++ compiler. The operators and their
precedence are shown in Table 2. Expressions are evaluated in
the following circumstances:

• Assignment to a variable in the@let directive;

• Initialising a typed formal argument when invoking a
macro;

• Calculating the return value when invoking a macro that has
a typed return value;

• The@() directive (see below); and

• Evaluation of the boolean expression in@if directives.

The supported types arebool , int , double , char andstring .
Unlike C/C++ there is no implicit conversion fromint to bool .

7

! Logical negation
˜ Bitwise negation
- Unary minus
+ Unary plus

ˆˆ Power
* Multiplication
/ Division
% Modulus
+ Addition
- Subtraction

<< Bitwise shift left
>> Bitwise shift right
< Comparison less-than

<= Comparison less-than-or-equal-to
> Comparison greater-than

>= Comparison greater-than-or-equal-to
== Comparison equal-to
=! Comparison not-equal-to
& Bitwise AND
ˆ Bitwise XOR
| Bitwise OR

&& Logical AND
|| Logical OR

? : Ternary conditional (if-then-else)

Table 2: Operators

10.1 @() directive

The@(x) directive forces compile time evaluation of expressions.
Note thatx is macro expanded before being evaluated as an ex-
pression.

int A[] =
{

@(2* 2* 2* 2), @(2ˆˆ4), @(1 << 4),
@(0xabcd & 0xf), @(3 | 5), @(27 % 4),
@("x" == "y"), @("x" < "y" +’z’),
@(1<2 && 2<4), @(!(1+1 < 2) ? 10 : 20)

};

Before translation

int A[] =
{

16, 16, 16,
13, 7, 3,
false , true ,
true , 10,

};

After translation

10.2 Special functions

The trigonometric functionssin , cos andtan are available. Also
the exponentialexp , and natural logarithmlog (basee).

@def double e = exp(1)
double f() { return e; }

Before translation

double f() { return 2.7182818284590451; }

After translation

11 @import directives

The xcpp preprocessor copies C/C++ preprocessor commands
such as#pragma , #include and#define verbatim from input to
output. In all other respects it ignores these directives (and trusts
their processing to the standard C/C++ compiler).

To make the xcpp preprocessor process and access the direc-
tives from another file, a@import directive must be used. This
is essentially the same as C/C++#include , and takes the path to
a file to be included at that location in double quotes. In factan
import directive is translated to a corresponding#include direc-
tive by the xcpp preprocessor in preparation for a standard C/C++
compiler. For example:

#include "blah.h"
@import "mydir/myfile.h"
int f() { return 1; }

Before translation

#include "blah.h"
#include "mydir/myfile.h"
int f() { return 1; }

After translation

There is a crucial conceptual distinction between a#include

and a@import . A #include indicates that the contents of the file
are to be inserted at that location and processedin that context.
In C/C++ the processing of the file could be influenced by earlier
#define directives. For example, consider a header file:

#ifdef X
typedef int Y;
#else
typedef double Y;
#endif

The processing of this file is influenced by whether a#define

X directive appears before it. Some programmers exploit thisca-
pability – by including the same file from different places, caus-
ing it to generate variable output.

This practice is rejected in the xcpp preprocessor because
its macro expansion capabilities are easily powerful enough to
eliminate the need for such techniques, and assuming every file
has a consistent translation allows the preprocessor tocache the
namespace of macro definitions obtained by processing the file.
This allows for significant performance gains in the xcpp prepro-
cessor for large projects.

The word import is intended to indicate that the directive
causes the importing of one namespace into another. The im-
plementation is able to cache namespaces in memory and an im-
port directive avoids the need to physically copy entries from
one namespace data structure into another. The effect is that all
header files behave like pre-compiled headers.

12 Macro variables

12.1 Macro reassignment

A macro can be redefined (or “reassigned”) making it like a vari-
able that changes value during the execution of the xcpp pre-
processor. No warnings are emitted by xcpp when a macro is
redefined:

@def m = "hello world"
const char * f() { return m; }
@def m = 200
int g() { return m; }

Before translation

8

const char * f() { return "hello world" ; }
int g() { return 200; }

After translation

Even though@def can be used to redefine a macro, making it
like a variable available during the execution of the xcpp proces-
sor, it is not generally suitable for this purpose because the macro
is always local to the scope in which the@def directive appears.
In the following example, there is no redefinition ofm, because
the body of the@if directive creates alocal scope for macro def-
initions:

@def m = 1
@if (m > 0)
{

@def m = m+1
}
int f() { return m; }

Before translation

int f() { return 1; }

After translation

In any case there would be problems with infinite recursion.
The following crashes the xcpp preprocessor with a stack over-
flow because the redefinition ofm is imposedbefore processing
its body (this is intentional because recursion can be very useful
– see section 14):

// Oops : crashes the xcpp preprocessor!
@def int m = 1
@def int m = m+1
int f() { return m; }

12.2 @let directive

To allow macros to be used like variables the@let directive can
be used. This directive has two syntactic forms. When the typeis
specified, it introduces a name in that scope. Otherwise, it binds
to an existing name by searching upwards through nested scopes
for a previously defined variable with that name.

@let int m = 0
@let m = m+1
int f() { return m; }
@if (m > 0) @let m = m+1
int g() { return m; }

Before translation

int f() { return 1; }
int g() { return 2; }

After translation

12.2.1 String variables

String literals can be given in single or double quotes (and this
has no effect on the meaning). The binary ’+’ operator can be
used to concatenate strings. However, string variables macro-
expand without the containing quotes! This leads to some sur-
prises. To get the quotes the@str directive must be used.

@let string m = "hello" + " "
@let m = @str (m) + ’world’
@let m := m !!!
const char * f() { return @str (m); }

Before translation

const char * f() { return "hello world!!!" ; }

After translation

There is a special syntax to assign a string variable to macro-
expanded text. The directive@let x := y is equivalent to@let

x = @str (y) .

12.3 @while directive

The@while directive allows for simple loops. For example:

// Calculate 1 + 2 + ... + n
@def int mSum(int n) =
{

@let int sum = 0
@let int i = 1
@while (i <= n)
{

@let sum = sum + i
@let i = i + 1

}
sum

}
@assert (mSum(4) == 10)

// Generate "1+2+...+n"
@def string mGenerateSum(int n) =
{

@let string sum := 1
@let int i = 2
@while (i <= n)
{

@let sum := sum+i
@let i = i + 1

}
@str (sum)

}
@assert (@str (mGenerateSum(4)) == "1+2+3+4")

13 @for directive

The@for directive allows for simple loops. The body of the di-
rective is repeately macro expanded for different values ofthe
loop variable(s), taken in sequence from theiteration list which
is a comma separate list of values enclosed in square brackets.

A tuple of loop variables is supported, by using a comma sepa-
rated list of identifiers in round brackets, and corresponding tuple
values in the iteration list.

The loop variables can be regarded as macros that have local
scope over the body of the@for directive.

@for (i in [1,2,3])
{

f(i);
}
@for ((i) in [(1),(2),(3)])
{

f(i);
}
@for ((i,j) in [(1,7),(2,-1),(3,4)])
{

g(i,j);
}

Before translation

f(1);f(2);f(3);
f(1);f(2);f(3);
g(1,7);g(2,-1);g(3,4);

After translation

The iteration list is initially parsed as a single block of text
enclosed in square brackets. This text is then macro expanded

9

according to the macros defined at the point of invocation of the
@for directive. Only then is the result parsed as a comma sepa-
rated list. This approach makes the following example possible:

const char * s =
@strx
(

@def makelist(int n) =
{

@if (n>1) {makelist(n-1),n}
@else {1}

}
@for (i in [makelist(4)])
{

@for (j in [makelist(i)])
{

i + j = @(i+j)

}
}

);

Before translation

const char * s =
"1 + 1 = 2\n"
"2 + 1 = 3\n"
"2 + 2 = 4\n"
"3 + 1 = 4\n"
"3 + 2 = 5\n"
"3 + 3 = 6\n"
"4 + 1 = 5\n"
"4 + 2 = 6\n"
"4 + 3 = 7\n"
"4 + 4 = 8\n"

After translation

14 Recursive macros

Macros may call themselves recursively (as long as they termi-
nate). The following example shows how we can use a macro to
calculate factorial at compile time. This example makes useof
strong typing on both the argument and return type.

@def int factorial(int n) =
{

@if (n <= 1) {1}
@else {n * factorial(n-1)}

}
int f()
{

return factorial(5);
}

Before translation

int f()
{

return 120;
}

After translation

Now consider that the return type on the factorial macro isn’t
specified:

@def factorial(int n) =
{

@if (n <= 1) {1}
@else {n * factorial(n-1)}

}
int f()
{

return factorial(5);
}

Before translation

int f()
{

return 5* 4* 3* 2* 1;
}

After translation

If we don’t strongly type the argument then we end up with an
erroneous definition because of lack of bracketing:

@def factorial(n) =
{

@if (n <= 1) {1}
@else {n * factorial(n-1)}

}
int f()
{

// oops!
return factorial(5);

}

Before translation

int f()
{

// oops!
return 5* 5-1 * 5-1-1 * 5-1-1-1 * 1;

}

After translation

15 Example usage of the macro ex-
pander

As a practical example, the macro expander has been found very
useful for generating test code. Some of the unit test files ex-
pand into over 100 000 lines of C++ code in order to fully flex
important parts of the ceda core.

Here is a concocted example of the macro expander at work
to give some idea of what’s available for automated code genera-
tion.

void UnitTests()
{

@for ((type,val) in [(int ,10), (char ,
’c’), (double , 2.71828)])

{
std::cout << @str (Testing with type

val) << std::endl;
type x @@type = val;
RunUnitTest(x @@type);

}
}

Before translation

void UnitTests()
{

std::cout << "Testing with int 10" <<
std::endl;

int xint = 10;
RunUnitTest(xint);

std::cout << "Testing with char \’c\’" <<
std::endl;

char xchar = ’c’;
RunUnitTest(xchar);

std::cout << "Testing with double 2.71828"
<< std::endl;

double xdouble = 2.71828;
RunUnitTest(xdouble);

}

After translation

10

A Xcpp preprocessor grammar

We use [1] to define the EBNF syntax.

A.1 Lexical scanner

Let printableChar denote a printable ASCII character. The fol-
lowing describes the lexical scanner (with the caveat that white
space and comment processing hasn’t been described – this is
done as normal for C/C++).

letter =
’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ | ’G’ |
’H’ | ’I’ | ’J’ | ’K’ | ’L’ | ’M’ | ’N’ |
’O’ | ’P’ | ’Q’ | ’R’ | ’S’ | ’T’ | ’U’ |
’V’ | ’W’ | ’X’ | ’Y’ | ’Z’ |
’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ | ’g’ |
’h’ | ’i’ | ’j’ | ’k’ | ’l’ | ’m’ | ’n’ |
’o’ | ’p’ | ’q’ | ’r’ | ’s’ | ’t’ | ’u’ |
’v’ | ’w’ | ’x’ | ’y’ | ’z’ ;

digit =
’0’ | ’1’ | ’2’ | ’3’ | ’4’ |
’5’ | ’6’ | ’7’ | ’8’ | ’9’ ;

identifier =
(’_’ | letter), { ’_’ | letter | digit};

boolLiteral = ’false’ | ’true’ ;

digSeq = digit, {digit};

integerLiteral = digSeq;

exp = (’E’ | ’e’), [’+’ | ’-’], digSeq;

floatLiteral =
digSeq, exp |
(digSeq, ’.’ | [digSeq], ’.’ , digSeq), [exp];

hexDigit = digit |
’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ |
’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ ;

hexLiteral = ’0x’ , hexDigit, {hexDigit};

escapeChar =
’r’ | ’n’ | ’a’ | ’b’ | ’f’ | ’t’ |
’v’ | ’O’ | ’"’ | "’" | ’\’ | ’?’ ;

stringChar =
printableChar - escapeChar |
’\’ , escapeChar;

stringLiteral =
’"’ , {stringChar}, ’"’ |
"’", {stringChar}, "’";

Grammar for lexical scanner

A.2 Expressions

The xcpp preprocessor must evaluate expressions under various
circumstances. For example, in coercions for typed arguments
to macros, typed return values from macros, in the@() directive,
and the boolean expressions used in@if-@else directives.

expression = assignmentExpr

assignmentOp =
’=’ | ’&=’ | ’|=’ | ’ˆ=’ | ’<<=’ | ’>>=’ |
’&&=’ | ’||=’ | ’ˆˆ=’ |
’+=’ | ’-=’ | ’ * =’ | ’/=’ | ’%=’ ;

assignmentExpr =
{varRef, assignmentOp}, conditionalExpr;

varRef = unaryExpr;

conditionalExpr =
logicalOrExpr, { ’?’ , expression, ’:’ ,

logicalOrExpr };

logicalOrExpr =
logicalAndExpr, { ’||’ , logicalAndExpr };

logicalAndExpr =
bitwiseOrExpr, { ’&&’ , bitwiseOrExpr };

bitwiseOrExpr =
bitwiseXorExpr, { ’|’ , bitwiseXorExpr };

bitwiseXorExpr =
bitwiseAndExpr, { ’ˆ’ , bitwiseAndExpr };

bitwiseAndExpr =
equalityExpr, { ’&’ , equalityExpr };

equalityExpr =
relationalExpr, { (’==’ | ’!=’),

relationalExpr };

relationalExpr =
shiftExpr, { (’<’ | ’<=’ | ’>’ | ’>=’),

shiftExpr };

shiftExpr =
additiveExpr, { (’>>’ | ’<<’), additiveExpr

};

additiveExpr =
multExpr, { (’+’ | ’-’), multExpr };

multExpr =
powExpr, { (’ * ’ | ’/’ | ’%’), powExpr };

powExpr =
unaryExpr, { ’ˆˆ’ , unaryExpr };

unaryExpr =
{ ’+’ | ’-’ | ’˜’ | ’!’ }, postfixExpr;

unaryFnName =
’len’ |
’bool’ | ’int’ | ’double’ |
’char’ | ’string’ |
’is_bool’ | ’is_int’ | ’is_double’ |
’is_char’ | ’is_string’ |
’sin’ | ’cos’ | ’tan’ | ’exp’ | ’log’ ;

postfixExpr =
primaryExpr, { ’[’ , expression, ’]’ };

literal =
boolLiteral |
integerLiteral |
hexLiteral |
floatLiteral |
stringLiteral;

primaryExpr =
identifier - unaryFnName |
unaryFnName, ’(’ , expression, ’)’ |
literal |
’(’ , expression, ’)’ ;

Grammar for expressions

A.3 Grammar of @def directive

type =
’bool’ | ’int’ | ’double’ |
’char’ | ’string’ ;

argType = type;
argName = identifier;

11

arg = [argType], argName;

returnType = type;
macroName = identifier;

defDirective =
’@def’ , [returnType], macroName,
[’(’ , [arg, { ’,’ , arg, ’)’ }], ’)’],
’=’ ,
value;

Grammar for @def directive

More informally we could define the syntax as follows:

@def [return-type] x [([type] a1,...,[type] an)] = y

This defines a macro namedx. The directive itself expands
into nothing in the output.x must be a C/C++ style identifier.
The macro namedx is added to the local namespace. This may
replace an existing definition ofx in the local namespace. There
is no support for overloading of macros - even on arity. The
body of a macro introduces a new scope (i.e. namespace). This
namespace contains the names of the formal arguments of that
macro.

The return type is optional. If given it must bebool , int ,
double , char or string . If no return type is provided then when
x is invoked,x macro expands into the result of macro expand-
ing y. Otherwise, if a return type is provided then after macro
expandingy, it is evaluated as an expression that must be im-
plicit convertible to the return type. The invocation ofx is then
substituted by the string representation of the evaluated result.

The argument list is optional. Each formal argument must be
an identifier. Formal argument names cannot be repeated. A for-
mal argument can optionally be preceded by a type which must
bebool , char , int , double or string . When a formal argument
is not typed, the formal argument binds directly to the text pro-
vided in the invocation of the macro. Otherwise, when a formal
argument is typed, the text provided for the formal argumentin
the invocation of the macro is first macro expanded then evalu-
ated as an expression that must be implicit convertible to the type
of the formal argument. The formal argument binds to the string
representation of the evaluated result.

References

[1] ISO/IEC 14977:1996(E).Information technology - Syn-
tactic metalanguage - Extended BNF, First edition
1996-12-15. http://standards.iso.org/ittf/

PubliclyAvailableStandards/s026153_ISO_IEC_

14977_1996(E).zip .

12

