Xcpp Mixins

David Barrett-Lennard
Cedanet Pty Ltd
Perth, Western Australia
david.barrettlennard@cedanet.com.au

March 24, 2010

AbStraCt return Base:: Get Hei ght ();
A mixin is a fragment of a class that is intended to be compose| ~ int GetHeight() const

Wlth other classes or mixins. X_cpp (afrontend prowdlngaex_t return Base:: GetWdth();
sions to C++) supports a specialised syntax for templaténsnix }

This paper presents some motivating examples and desthibes | 1}

syntax.

In a more complete example, methods would also be imple-
mented to apply a rotation transformation before callirgglibse
1 Overview class draw method (this for example would simply involve k ca
togl Rot at e in OpenGL), and to rotate (X,y) positions passed into
Mixins have been described in the literature as a remarkabietesting or mouse event methods. The upshot is that one can
means to achieve code reuse (See for example [1] and [2])rotateany GUI control by 90 degrees, and it works exactly as
mixin is a capability that can be easily added to one or ma#gpected. For example a horizontal slider control beconves-a
classes. A mixin itself is never intended to be stand aloree ¢ tical slider, and even allows the mouse to be used to drag the
be instantiated in isolation. Rather it is only an adornnierite slider thumb in a vertical direction.
applied to some existing class. The following mixin scales the x coordinate byal ex, and
Typically a mixin is highly reusable, and may be mixed intthe y coordinate bycal ey.
many different concrete c_Ias_ses. Therefore it can be reg&_ld tenpl ate <class Base, int scalex, int scal ey>
a powerful means of achieving code reuse. There are differel struct Scale : public Base
ways that the mixin concept has been implemented in C++. On {
way is to use multiple inheritance. However, there are mahy a

int GetWdth() const
{

vantages to using single inheritance chains of mixins iing| return scal ex = Base::GetWdth();
template classes that are parameterised on the base class. }

Java and C# don't support a general enough form of genericit int GetHeight() const
to make the technique possible in those languages [3]. {

. o . return scal ey * Base:: GetHeight();
The Xcpp front end provides specialised support for mixins } Y g

and involves thesni xi n keyword. A detailed description of this IE
feature is the main focus of this article.

The following mixin applies a border (i.e. left, right, topch
bottom margins) around its base class.

2 C++ parameterised template mixins

tenpl ate <cl ass Base, int border>
)))) o] struct Border : public Base
In this section the technique of using mixins is illustraitedtan- {

dard C++ in the GUI controls application domain. For simipfic int GetWdth() const
itis assumed the GUI elements appear in a rectangular ragion { e e e C
the examples only show how mixins can be used to help writs - '

Get Wdt h() andcGet Hei ght () methods. In a more complete ex- int GetHeight() const

ample, methods to perform drawing (e.g. by issuing OpenGl { - _ .
commands), hit testing and to process mouse events would | -, return 2-border + Base:: GetHei ght ()
defined as well. };

2.1 Some example mixins) L
o _ _ _ 2.2 Using themixins
The mixin Rot at 90 applies a rotation of 90 degrees to its (un- . .
specified) base class. Note that when a rectangle is rotgt@d bIn order to use the mixins, a concrete class is needed thdtean
degrees its width becomes its height and vice versa. fed into the base of theiixin chain. For this purpose, consider a

rather conventional C++ class nametl t Squar e.

tenpl ate <cl ass Base>

struct Rotate90 : public Base struct Unit Square
int GetWdth() const int GetWdth() const { return 1; }
{ int CGetHeight() const { return 1; }

Run time assembly is very powerful for allowing end users
to compose complex systems from simple parts. Therefoire bot
Mixins are applied in a linear chain involving single inkerigpproaches can be important. An effective strategy, thasgi
tance. Interestingly the same mixin can usefully appearemefe pest of both worlds is to use mixins as a basis for writing
than once in the chain. Most generally the order in which tagmponents that support run time assembly. More specificall
mixins are applied is significant. For example applying aleor g yaluable technique is to write a delegator base classiasswc
before it is scaled, means that the margins are scaled as welljth the abstract base class. That way all the compile timensi

RE

struct X : Scal e< Border< Rotate90<

can be easily converted into run time decorators. For exampl

Scal e<Uni t Square, 2,1> > 1 > 10,3 >
{

be

It turns out that x :Getwdth() returns 30, and
X:: GetHeight () returns 12. Modern C++ compilers are
rather good at inlining, so typically the release buildexsctly
the same as if the following had been entered by the programmer

struct X

int GetWdth() const { return 30; }
int GetHeight() const { return 12; }
M

2.3 Advantages

This example only shows the tip of the iceberg. A more coneplet
example would provide a few dozen mixins, and support draw,
ing, mouse events etc. Mixin classes remain relatively rbp-
cause they represent simple orthogonal concepts. In catidoin
they make the compiler generate fast, efficient, non trisgale -
the kind of code done manually by the human with conventiona
GUI programming.
OO programs often exploit dynamic polymorphism to achieve

code reuse. For example the decorator design pattern ¢[47} i

/| Abstract Base C ass uses virtual methods
/1 to allow for dynam c pol ynorphi sm
struct Gui Contr ol

{
virtual int GetWdth() const = O;
virtual int GetHeight() const = O;

Ik

/| General purpose del egator forwards on

/1 method calls to its del egate
struct Gui Control Del egat or :
public Gui Control
{
int GetWdth() const
{

}
int GetHeight() const

{

return del egate->Cet Wdth();

return del egat e- >CGet Hei ght () ;

}
Gui Control * del egat e;
Ik

/1 Applying the mixin to the del egator
/'l gives a run tine decorator
struct Rotate90Decorator :
Rot at e90<CGui Cont r ol Decor at or >
{
Ik

ten used. A decorator object could apply a rotation of 90 elegr

Note that as a result of inlining the run time decorator ig jus

to the GUI control that it decorates. This approach is dfieito as efficient as a version coded directly without mixins,

mixins in the following respects:

e A run time decorator class requires a member variakz’)ue
which is a pointer to the object being decorated. The pro-

gramrlrljerbmust vv_rcijtedthe code to initialise this rr_1e_r_nt|pr. _E'ghe above example shows that in straight C++ long mixin chain
It ct%u g e provided in a constructor or an initialisation o other awkward syntactically. The Xcpp front end presid
method, a much more convenient syntax. The above example can be en-

Using Xcpp for mixins

e Dynamic polymorphism is required so the same decorafded as follows
can be applied to many different kinds of objects at run time

$m xi n Rot at e90

e Compile time assembly instead becomes run time assen { int GetWdth() const
bly. This can be inconvenient to express in procedural code
Code that creates and wires up objects at run time is typi }

cally more verbose than using mixin chains, where binding int GetHeight() const

of method calls through the chain is implicit; {

return $base:: Get Hei ght () ;

return $base:: Get Wdth();
e \ery fine grained run time assembly can lead to objects thg }

seem mysterious - such as an object that rotates another g - o))

. $m xi n Scal e<i nt scal ex, int scal ey>
ject; {
. int GetWdth() const
e Run time assembly can exacerbate the problem of suppor {

ing persistence (i.e. assuming the assemblies themsetves ¢

to be made persistent). There are great performance ove } _
int GetHeight() const

return scal ex * $base:: GetWdth();

heads for persisting fine grained graphs or trees of object {
and perhaps even more significantly it greatly complicate return scal ey * $base:: Get Hei ght ()
the problem of schema evolution; } }

e There is inevitably the overhead of indexing into a vtable ?m' xin Border<int border>
for. gach methlo'q call, and more significantly it defeats the int Getwdth() const
inlining capabilities of the compiler; and {

return 2xborder + $base:: Get Wdth();

e There are more objects to be heap allocated. }

int GetHeight() const

{ $mi xin DrawsliderM xin
return 2xborder + $base:: Get Hei ght (); { .
} void Draw() const
i {
$nmi xi n Uni t Squar e float pos = Get ThunbPos();
{ int height = GetHeight();
int Getwdth() const { return 1; } int width = Getwdth();

int GetHeight() const { return 1; }))
// Draw the slider in a rectangle of

$‘struct X /1 dinmensions 'width , 'height’

i // with the thunb at position ’pos’
[
Uni t Squar e) }
Scal e<2, 1> bé
Rot at e90
Bor der <1> Notice that this mixin assumes that the base class has imple-
] Scal e<10, 3> mented the following functions
{. int GetWdth() const;
b int GetHeight() const;

float Get ThumbPos() const;

The mixin chain is enclosed in square brackets. Itis inttgut
as follows: we start with a unit square then apgdyil e<2, 1> to
scale it horizontally. Next we rotate by 90 degrees, applgraér
then finally scale it vertically and horizontally.

We have already seen how mixins can help implement
Get W dt h() andGet Hei ght () . For example

$m xi n Defaul tSliderD mensi onsM xi n
{

4 Parameterised mixins and model- int GetWdth() const { return 128; }
int GetHeight() const { return 32; }

view-controller }:

Ceda makes heavy use of the model-view-controller pattern, Now consider the following class
in a very unconventional manner. The idea is to use parame
terised mixins to write a single class that internally conelsi the

$class X isa ceda::|View

nodel
model, view and controller into single object. {
The basic pattern is illustrated with the following code ; int mx;
$cl ass MYMV/C i sa ceda::|View m xin

nodel [

Def aul t Sl i der Di nensi onsM xi n
/'l model variables go here

: i Xi /1 Anonynous mi Xin
m xin {
[MyVi ewM Xi n float Get ThunmbPos() const
MyControll erM xin { return (float) mx/100;
: }
{ }

be

MM/Cis a class that supports persistence. It has a single mod]
which supports schema evolution and this feeds into thé¢ ctar {
the mixin chain. As a result all mixins have read and writeeasc b
to the model variables. Note that this access is throughghea . L - .
priate read and write barriers. Therefore when the view mi&i This makes use O.f camnonymous mixin within the mixin chain.
read the model they automatically establish dependenaigad | "€ @nonymous mixin implements the meth@d ThunbPos()
Dependency Graph System. Also when the controller maniﬁlﬂl@t,',s ex.pected byr awsl i der M xi n. The resuIF is that the slider
lates the model variables, operations are automaticaiigigeed position is determined by the data model variahle.
against the model. These operations allow for interactive a
non-interactive collaboration amongst multiple usersficura-
tion management etc. Note as well then whenever the mo@eferences
variables are changed (either locally through the comrotbr
remotely due to the execution of operations received frameot[1] G. Bracha and W. CookMixin-Based Inheritance, Pro-
computers), the dependent caches will automatically bé&edar ~ ceedings of the 8th Conference on Object-Oriented Pro-
as dirty. Therefore there is no need for the programmer to be gramming, Systems, Languages, and Applications, Euro-
concerned with the observer pattern between model and view. P€an Conference on Object-Oriented Programming, 1990.

DrawsSl i der M xi n

o [2] Ulrich W. EiseneckerMixin-Based Programming in C++,
5 Anonymous mixins Dr. Dobb’s Journal, January 200it,t p: / / www. ddj . cont

cpp/ 184404445.
When writing a mixin the objective is generally to make it maxi

mally reusable. Often the best way to achieve that aim isaaav[3] Bruce Eckel,Mixins. Something Else You Can’'t Do With
any state (i.e. member variables)! Consider a mixin thagis r Java Generics?, October 19, 2005t t p: // www. ar t i ma.
sponsible for drawing a slider com webl ogs/ vi ewpost . j sp?t hr ead=132988.

[4]

(5]

Erich Gamma, Richard Helm, Ralph Johnson and John
Vlissides, Design Patterns. Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995, ISBN-13:
9780201633610.

ISO/IEC 14977:1996(E).Information technology - Syn-
tactic metalanguage - Extended BNF, First edition
1996-12-15. http://standards.iso.org/ittf/
Publ i cl yAvai | abl eSt andar ds/ s026153_1 SO | EC_
14977_1996(E) . zi p.

